
Java EE Application Security
This article gives an overview about different attack mechanisms against Java web applications
and J2EE applications. It introduces available security concepts in Java like JAAS and Sandbox
security. Furthermore, security related design patterns are explained
The article is based on a workshop, I attended on the Jax Conference 2006 in Wiesbaden
Germany. The topic was Java EE Application Security and Security Patterns. It was hold by Bruce
Sams (www.optimabit.de). I added some information from other resources as well and created
some more detailed examples.

Do you need expert help or consulting? Get it at http://www.laliluna.de

We provide a small but highly qualified development team for your projects. If you need
support in a project or would like to get a complete project done, feel free to contact us.
email form, phone: ++49 6109 / 204 9999

In-depth, detailed and easy-to-follow Tutorials for JSP, JavaServer Faces, Struts, Spring,
Hibernate and EJB

Seminars and Education at reasonable prices on a wide range of Java Technologies, Design
Patterns, and Enterprise Best Practices Improve your development quality

An hour of support can save you a lot of time - Code and Design Reviews to insure that the
best practices are being followed! Reduce solving and testing time

Consulting on Java technologies Get to know best suitable libraries and technologies

Table of content
Java EE Application Security...1
General...2
Remove Comments..2
Directory Browsing...2
Multiple Level of Security...3
Typical problems of web applications..3
Sandbox Security...3
JAAS...4

Add a security constraint ..4
Add a login mechanism...4
Configure a Realm...5
Context of a Web application..5
JAAS and EJB...5
Role Linking...5

Single Sign On..6
SQL Injection in Java Web applications...6
Java Script attacks...6

Cross side scripting...6
Attacking forms...6
Security Design Pattern ..7

Secure Transport Object (STO)..7
Intercepting Validator Pattern..7

http://www.optimabit.de/
http://www.laliluna.de/
http://www.laliluna.de/index.php?id=22
http://www.laliluna.de/

Secure Based Action...7
Copyright and disclaimer..7

General
Author: Sebastian Hennebrueder
Date: March, 3rd 2007
Article as PDF: http://www.laliluna.de/download/java-security-tutorial.pdf

Remove Comments
Delete comments in deployed documents. An intruder could use this information to attack your
side. You should not use any HTML comments in your JSP.

 <!-- HTML comment: looks up user data in table tuser -->

Even if you use a comment like the following in your JSP, there can be a situation, in which the
JSP is not rendered and the comment is visible to a intruder (-> directory browsing).

 <% /* JSP comment: looks up user data in table user */ %>

Directory Browsing
Directory browsing allows other people to see all your JSP files without being rendered. They
could retrieve valuable information about your application from these files. You have multiple
options to protect your JSP files:

● Deactive directory browsing on server and application level.
● Protect the JSP directories with JAAS.
● Change the default servlet coming with Tomcat. This servlet does provide the browsing

feature.

Multiple Level of Security
Features like Directory Browsing, Session Time Out can be configured on server level and
application level in the web.xml. You should have tight server level settings so that a incautious
developer have a secure application by default.

Typical problems of web applications

● Self made Session id
● Incomplete validation of user input
● Server configuration

Do not reinvent the Session handling. The session provided by nowadays application server
should be secure. There might have been problems for some application servers in the early days
but this is a long time ago.
Imagine you would use a timestamp as session. An intruder could easily take over an existing
session by trying out current timestamps.
Normally a Tomcat session looks like
http://localhost/MyApplication/listUser.do;jsessionid=2CFB532547A143436A46727B3B4C7C0A
If you use a timestamp as session id you will have something like:
http://localhost/MyApplication/listUser.do;mySessionId=2006-05-25-19:31:050
Even if your session id is more complicated than a timestamp, you should keep in mind that an
attacker could create a list of sessions in search for a pattern in your session id.

http://localhost/MyApplication/listUser.do;mySessionId=2006-05-25-19:31:050
http://www.laliluna.de/download/java-security-tutorial.pdf
http://localhost/MyApplication/listUser.do;jsessionid=2CFB532547A143436A46727B3B4C7C0A

Sandbox Security
The Java virtual machine allows to define access permission to the filesystem, classes, sockets,
JVM attributes for all applications running in the JVM. Below you can find an extract of the
properties provided with Tomcat. This is a powerful option to set up a secure application server
which is not able to get access to other application server.

grant {

 // Required for JNDI lookup of named JDBC DataSource's and

 // javamail named MimePart DataSource used to send mail

 permission java.util.PropertyPermission "java.home", "read";

 permission java.util.PropertyPermission "java.naming.*", "read";

 permission java.util.PropertyPermission "javax.sql.*", "read";

 // OS Specific properties to allow read access

 permission java.util.PropertyPermission "os.name", "read";

 permission java.util.PropertyPermission "os.version", "read";

 // Required for OpenJMX

 permission java.lang.RuntimePermission "getAttribute";

// Allow read of JAXP compliant XML parser debug

permission java.util.PropertyPermission "jaxp.debug", "read";

 // Precompiled JSPs need access to this package.

 permission java.lang.RuntimePermission
"accessClassInPackage.org.apache.jasper.runtime";

 permission java.lang.RuntimePermission
"accessClassInPackage.org.apache.jasper.runtime.*";

};

grant codeBase "file:${catalina.home}/webapps/examples/-" {

 permission java.net.SocketPermission "dbhost.mycompany.com:5432", "connect";

 permission java.net.SocketPermission "*.noaa.gov:80", "connect";

};

If you allow a JVM to access JNI you can escape from this protection. JNI allows to start
applications developed in languages like C, Delphi etc.
Some commercial application servers allow to set up sandbox security on a per application level.
This is a very powerful feature in environments where security is extremely important or where a
lot of different applications are running.

JAAS
Java Authentication and Authorization Service (JAAS) is a standard mechanism implemented in all
application server to protect your applications. The login mechanisms is implemented outside your
application but you can access the user and his roles within your application.
In a web application you can need to do the following to activate JAAS:

Add a security constraint
In the following application, I added a constraint in the web.xml for all calls to any files and folders
below my application name. I defined that only users with the role application have access to this
file. You can define access options like post, get or put or required protocols like SSL as well.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

................. snip

 <security-constraint>

 <display-name>Laliluna application</display-name>

 <web-resource-collection>

 <web-resource-name>Protected Area</web-resource-name>

 <!-- Define the context-relative URL(s) to be protected -->

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <!-- Anyone with one of the listed roles may access this area -->

 <role-name>application</role-name>

 </auth-constraint>

 </security-constraint>

...... snip

</web-app>

Add a login mechanism
Servlet containers like Resin, Tomcat etc offers different kind of login mechanisms. Typical
mechanisms are a form popping up in your browser or an individual designed login from. Below we
defined a simple login which will popup in the Browser.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

................. snip

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>Telekom Training Export</realm-name>

 </login-config>

 <!-- Security roles referenced by this web application -->

 <security-role>

 <role-name>application</role-name>

 </security-role>

</web-app>

Configure a Realm
Finally you must configure a place where the application server can lookup user, roles and
passwords.
This can be file based, LDAP or a database. Below you can find a configuration in the JBoss
application server.

 <!-- Security domain for JBossMQ -->

 <application-policy name = "jbossmq">

 <authentication>

 <login-module code = "org.jboss.security.auth.spi.DatabaseServerLoginModule"

 flag = "required">

 <module-option name = "unauthenticatedIdentity">guest</module-option>

 <module-option name = "dsJndiName">java:/DefaultDS</module-option>

 <module-option name = "principalsQuery">SELECT PASSWD FROM JMS_USERS
WHERE USERID=?</module-option>

 <module-option name = "rolesQuery">SELECT ROLEID, 'Roles' FROM JMS_ROLES
WHERE USERID=?</module-option>

 </login-module>

 </authentication>

 </application-policy>

To sum up, JAAS allows you to plug in security in a very flexible manner. You may consider not to
reinvent a security mechanisms for your application.

Context of a Web application
A JAAS login is only valid for one web application. Even if the same role is applicable in two web
applications you would have to login in again. The session will not be reused in the other
application.

JAAS and EJB
Enterprise Java Beans are by default unprotected. If you implement Remote interfaces for your
EJBs, they are accessible from every PC having access to your server. To protect your EJB you
have different options

● do not use remote interfaces (if you do not need them)
● use JAAS to protect your EJBs
● protect the access of protocols (normally RMI) to your server

Role Linking
If you have a lot of applications running on the same server, you will have sooner or later
applications having the same roles and users. In most cases this is not a wanted situation. The
solution is to link a application user role to another external role.

Single Sign On
There are two approaches for Single Sign on. The first approach is session sharing across
applications. The second approach is two move the login mechanisms outside your application
server.
The latter case requires a security token which must be passed to the application. If you are
interested in this topic you may have a look at Kerberos Single Sign On.

SQL Injection in Java Web applications
Imagine a login form in a web application where the user inputs a user name and a password.
Your application issues a SQL statement:

select username from user where username= 'Peter' and password = 'secret'

If the user inputs for password something like

secret' or '1'='1

Your query will be something like

select username from user where username= 'Peter' and password = 'secret' or '1'='1'

The same kind of injection can happen with any kind of search form. If a intruder wants to reduce
your product prices he could input the following in your search form.

Blablub';update product set price = 1 where product_id=55 and '1'='1

Your search query will be something like

select from product where name = 'Blablub';update product set price = 1 where
product_id=55 and '1'='1'

These kind of attacks are typical for applications using JDBC directly. A good protection is to use
prepared statements or Object Relational Mapping solutions like Hibernate, EJB or JDO.

Java Script attacks

Cross side scripting
When a intruder can take over your session he is working with your account. Imagine somebody
takes over your session in a Internet Shop and orders products. You will get a lot of problems.
An intruder could post links into a forum to a internet shop having very low prices. Once you click
on this link the website is loaded into a frame. Outside the frame there is a Java script application
sending input of your frame or your session to another website. Once the intruder has access to
your session we will hold your session open to misuse it later or when you are not available.
This is not a problem specific to Java applications but to web applications in general.
You could enforce that your application is not running inside another frame, to solve this security
problem.
Another approach to have a improved security is to enforce a maximum session life time. If your
users can accept that their session is not living longer than two hours, you could invalidate all older
sessions periodically. This makes it impossible for intruders to keep sessions alive for a longer
time.

Attacking forms
If you validate forms using JavaScript or you keep information in your form with hidden fields you
can be attacked easily. Let us assume that we have a multi page form and you save the customer
level in a hidden field. Dependent on the customer level a customer gets a special discount.
Using a web proxy like Scarab you can easily rewrite hidden fields and get a special discount for
your order.

Security Design Pattern

Secure Transport Object (STO)
In distributed environments you have to transport serialized objects from one application server to
another. The transport item could be a message, a serialized object of a Remote EJB or any other
kind of data on a enterprise service bus.
The connection between your application server could be insecure or your transport item could
have to pass multiple intermediates.
In this situation the pattern Secure Transport Object is a good choice to protect your data. It is a
Data Transfer Object (DTO) which is protected by encryption. The sender encrypts the data using
a password or a public key. The STO passes any number of intermediates and reaches the target
which decrypts the STO using the same password or a private key.

You could implement a more fine grained approach as well, allowing that only some attributes of
an object are protected.

Intercepting Validator Pattern
In order to validate all input in a proper manner and to protect your application against JavaScript
or SQL injection you can use the Intercepting Validation Pattern. Instead of validating input
decentralized in your application you have a central mechanism to validate the user input.

Secure Based Action
This pattern defines a single point of entry for your application and enforces security restriction.
For example, you could implement a Filter Servlet validating that you are allowed to call the
specified method. In a Struts application you could overwrite the default controller and add the
validation of security constraints.

Copyright and disclaimer
This tutorial is copyright of Sebastian Hennebrueder, laliluna.de. You may download a tutorial for
your own personal use but not redistribute it. You must not remove or modify this copyright notice.
The tutorial is provided as is. I do not give any warranty or guaranty any fitness for a particular
purpose. In no event shall I be liable to any party for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this tutorial, even if I has
been advised of the possibility of such damage.

	Java EE Application Security
	General
	Remove Comments
	Directory Browsing
	Multiple Level of Security
	Typical problems of web applications
	Sandbox Security
	JAAS
	Add a security constraint
	Add a login mechanism
	Configure a Realm
	Context of a Web application
	JAAS and EJB
	Role Linking

	Single Sign On
	SQL Injection in Java Web applications
	Java Script attacks
	Cross side scripting

	Attacking forms
	Security Design Pattern
	Secure Transport Object (STO)
	Intercepting Validator Pattern
	Secure Based Action

	Copyright and disclaimer

