Mapping use cases to Struts

This Tutorial illustrates how to map use cases from application logic to Struts. We will use the
Struts config designer of MyEclipse to define the Struts configurations very fast. As sample
application, we use a library.

Generals

Author:

Sascha Wolski

Sebastian Hennebrueder

http://www.laliluna.de/tutorials.html — Tutorials for Struts, EJB, xdoclet and eclipse.

Date:
January, 25 2005

Software:

Eclipse 3.0

MyEclipse Enterprise Workbench 3.8
Struts Framework 1.1, 1.2

Requirements

The tutorial http://www.laliluna.de/myeclipse-visual-struts-development-tutorial.html is required.

PDF Version

http://www.laliluna.de/assets/tutorials/mapping-use-cases-struts-tutorial-en.pdf

Business processes

Use cases for a library application can be add, edit and removal of books, borrow books and
managing customer data.

Manage boaoks

Manage customers

Barrow books

Books administration

We have three detailed use cases: add, edit and remove.

Add books

A form to input the book data is shown to the user. If the user submits the form validation of the
data is accomplished. If the validation is not successful error messages will displayed on the input
page, otherwise the book will be added and a success page will be displayed.

The following activity diagram shows the course of the process.

(input form for book data)

Struts-config

{ add the book]

(SUCCESS I'I'IESSEQE)

In order to build the business processes in struts you need a form bean, a action and two JSP
files. The structure in the design mode of the struts config file looks like the following.

Actions
« bookAdd

FormBeans
« bookAddForm

JSPs
« bookAdd.jsp
+ bookAddSuccess.jsp

Forwards of the action bookAdd
+ bookAddSuccess to bookAdd.jsp
« addbook to bookAddSuccess.jsp

bookadd

name; bookaddForm

path: [bookadd

kype: de.laliluna, tutaorial.map —bookAddSuccess
pingusecases, action.B
ookAddAction

input addBoak,

¥

@ bookAdd. jsp @ bookaddSuccess. jsp
url: [Formfbookadd. jsp url: fispfbookaddSuccess. jsp

Edit books

The user chooses a book to edit from a list of all books. He is forwarded to a form which contains
the data of the book. At this point there is a option to abort this process and go back to the list of
all books. If the user continues the process he can modify the data and submit the form. After
submitting the form validation of the data is accomplished. If the validation is not correct the user
will be forwarded to the edit page where the error messages are displayed, otherwise the user will

be forwarded to a success page.
i lizt of booksz }
(Edil form for a huuk)

yalidation

update book

CSUCCESS I'I'IESSEIQE)

Struts-config

You need a form bean, an action and a JSP file for the list of all books and an other form bean, an
action and a JSP file to create the edit page where you can modify the book data. The structure

looks like the following.

Actions
« bookEdit
« bookList

FormBeans
« bookEditForm

« bookListForm

JSPs

« bookEdit.jsp

+ bookEditSuccess.jsp
+ bookList.jsp

Forwards of the action bookList
+ bookList to bookList.jsp
+ bookEdit to action bookEdit

Forwards of the action bookEdit
- bookEdit to bookEdit.jsp

+ bookEditSuccess to bookEditSuccess.jsp

« back to action bookList

bookEdit

name: bookEditForm

bookLisk

name: bookListForm

path: [bookEdit

kvpe: de.laliluna, tukarial.map
pingusecases, ackion. B
ookEditAction

rM——thookEdit—

hack ——m

path: [bookList
kvpe: de.lalluna,tukarial.map

input bookfbookEditSuccess

@ bookEdit. jsp

@ bookEditSuccess. jsp

url: fform/bookEdit, jsp

url: fisp/bookEditSuccess. jsp

Delete books

pingusecases, ackion. B
ookListAction
F Y
bookList inpuk

¥
@ bookList . jsp

url: fformfboakList, jsp

The user can choose a book to delete from the list of all existing books and will be forwarded to a
confirm page, where he confirms the delete process. If the user confirms the delete process the
book will be deleted, otherwise he will be forwarded back to the list of books.

list of books

choosze delete

(cunfirm delete process] =

delete book

(SUCCESS message>

Struts-config

To build the list of all books you need a form bean, an action and a JSP file. You can use the
action which lists all books from the edit process, add only a new forward. You also need two JSP
files, a form bean and a action to build the delete process.

Actions
« bookList
« deleteBook

FormBeans
« bookListForm

« deleteBookForm

JSPs
« bookList.jsp
+ deleteBookSuccess.jsp

+ deleteBook.jsp

Forwards of the action bookList
« deleteBook to action deleteBook

+ bookList to bookList.jsp

Forwards of the action deleteBook

- back to action bookList

deleteBook to deleteBook.jsp

bookLisk

path: fbookList

name: bookListForm

kvpe: de.laliluna,tukarial.map
pingusecases, ackion, B
aokLiskAckion

rM—thack

bookLisk

F

impuk

bookList . jsp

url:

[form bookList, jsp

Customers ad

ministration

—deleteBook—

deleteBookSuccess to deleteBookSuccess.jsp

deleteBook

name: deleteBookForm

path: fdeleteBook,

kvpe: de.lalluna,tukarial.map
pingusecases, action. D
eleteBookAction

—deleteBookSucess

deleteBook. input

@ deleteBookSuccess, jsp

url: fispf/deleteBookSuccess. jsp

@ deleteBook. jsp

url: fFormdeleteBook, jsp

On the customer administration we have three detail processes, add, edit and remove of a

customer.

Add customers

A form page where you can at the customer data will be shown to the user. After he added the
data and submitted the form a validation is accomplished. If the validation is not successfully the
form page with the error messages will be displayed, otherwise a success page with information

that the user is successfully added will be shown to the user.

(furm

to add a custumer)

yalidation

[add customer }

(SUCCESS I'I'IESSEQE)

Struts-config

In the config design mode the description of the process above looks like the following. You need
a form bean, an action and two JSP files. One jsp file displays the form and the other the success
information.

Actions

« customerAdd

FormBean

« customerAddForm

JSPs
« customerAdd.jsp

+ customerAddSuccess.jsp

Forwards of the action customerAdd
+ customerAdd to customerAdd.jsp

« customerAddSuccess to customerAddSuccess.jsp

cusktomer fdd

name: customeraddForm

path: fcustomerfdd

kype: de.lalluna.tutorial.map
pingqusecases, action, C

ustomerAddAction
inpuk cuskomerAddSuccess
@ cusktomeradd. jsp @ cuskomerAddSuccess, jsp
— ustomerddd —
url: fformfcustomeradd, jsp url: fisploustomeraddSuccess. jsp

Edit customers

First the user chooses a customer which he wants to edit from a list of all customers. You may
recognize that we use the same way as before with the book edit process. After the user selected
a customer, a form page will be shown to him, which contains the data of the selected customer.
The process can be aborted and the user goes back to the list of customers. After the data has be
modified and the form has been submitted, a validation of the data is accomplished. If an error
occurs during the validation, the user will be forwarded back to the edit page where the error
messages will be displayed. If the validation is successful a success page will be shown to the

user, that the customer was added successfully.

Struts-config

You need an action, a form bean and a JSP file for the list of books. The edit process needs also

validation

{ list of books]
(edit form for a huuk)

update book

(SUCCESS I'I'IESSEQE)

an action, a form bean, but two JSP files.

Actions
« customerList

« customerEdit

FormBeans
« customerListForm

« customerEditForm

JSPs
+ customerList.jsp
« customerkEdit.jsp

+ customerEditSuccess.jsp

Forwards of the action customerList
« customerList to customerList.jsp

« customerEdit to action customerEdit

Forwards der Action customerEdit

« customerkEdit to customerEdit.jsp

+ customerEditSuccess to customerEditSuccess.jsp
« back to action bookList

cuskornerEdit cuskamerLisk
name: custormerEditForm narme: cuskamerListFarm
input —™ path: fcustomerEdit r—ustomerEdit — path: foustomerList
kvpe: de.laliluna, bukarial.map kvpe: de.laliluna, tatarial, map
pingusecases. action C L p o g pingusecases, ackion. C
ustomerEditdckion ustomerLiskackion
cuskomerEdit inpuk biookLisk
customerEditSuccess
@ customerEdit. jsp Ii;l cuskomerList. jsp
url: fFormfcustomerEdit. jsp url: jFormfcuskomerList, jsp

@ customerEditSuccess, jsp

url: fispfoustormerEditSuccess. jsp

Delete customers

The process is similar to the delete process of a book. On the list of customers the user can
choose which customer he wants to delete. After this he is forwarded to a confirm page where the
user must confirm with yes or no the delete process. If he chooses yes the customer will be
deleted, otherwise he goes back to the list of customers.

list of customers

{ chooze delete 3
(t:nnfilm delete process 3 = ’

{ delete customer }
(success message)

Stuts-config

You can use the action, the form bean and the jsp for the list of customers of the edit process.
Further you need a new action, form bean and jsp files to build the delete cofirm dialog. In the
struts config design mode the structure looks like the following.

Actions

- customerList

« customeDelete

FormBean
« customerListForm

« customerDeleteFrom

JSPs
+ customerList.jsp
« customerDelete.jsp

+ customerDeleteSuccess.jsp

Forwards of the action customerList
« customerList to customerList.jsp

« customerDelete to action customerDelete

Forwards of the action customerDelete

« customerDelete to customerDelete.jsp

« customerDeleteSuccess to customerDeleteSuccess.jsp

« back to action customerList

cusktamerList cuskomerDelete
name: cuskometListForm name: cuskomerDeleteForm
path: foustomerList [—hack, path: fcustomerDelete —rustomerDeleteSuccess
bype: de.laliluna. tutorial.map bype: de.laliluna. tutorial.map
pingusecases, action. C Lo ckarmerDelete pingqusecases, ackion. C
ustomerListAction ustomerDeletefction

| |

input bookList input - cuskomerDelete
¥
@ cuskamerLisk, jsp @ cusktomerDelete. jsp @ cuskomerDeleteSuccess. jsp
url: fformfcustomerList . jsp url: fformfcustomerDelete. jsp url: fcustomerDeleteSuccess. jsp

Borrow books

In the first dialogue the user will ask to input the customer number in a form. After he submitted
the form a validation of the customer number is accomplished. In the case of invalid validation the
user will be forwarded back to the input page and the errors will be displayed.

If there are no errors during the validation the user is forwarded to the customer page, where the
customer data and the borrow fees will be displayed. If the customer can pay the fees, the user
can go to a fees dialogue, otherwise he is forwarded to the borrow dialogue. The process can be
aborted by the user and he goes back to the input dialogue for the customer number.

Fee dialogue

On the fee dialogue the existing fees will displayed. The user can abort this process and go back
to the customer info page. The existing fees can be marked as paid and after the user confirmed
the dialogue a success message will be shown on a new page. The fees are marked as paid, will
be displayed. After this step the user will be forwarded to the customer info page.

Borrow Dialogue

On the borrow dialogue the user can search and choose the books, which are borrowed by the
customer. If the user confirms the dialogue he is forwarded to the receipt page. He can print the
receipt. In the next step the user can choose if he wants to return to the input page of the
customer number or back to the customer info page.

f/ﬂ(mput customer data)\

|splay cusztomer info and fee)

(malk fee as payed)
(-::huuse books for hurmw)
J/ "

/\/

Z

CSUCCESS I'I'IESSEIQE)

print receipt dizplay receipt

Struts-config

You need two actions, two form beans, two JSP files to build the input page for the customer
number and the customer info page.

Fee dialogue

You need one action, one form bean and two JSP files for the fee dialogue.

Borrow dialogue

You need two form beans, two actions and three JSP files.

Actions

+ selectCustomer

+ loadCustomerData
« borrowBooks

- borrowBills

« borrowReceipt

FormBeans

+ customerNumberfForm
« customerinfoForm

« borrowBooksForm

« borrowBillsForm

+ borrowReceiptsForm

JSPs

« customerNumber.jsp

+ customerinfo.jsp

+ borrowBooks.jsp

« borrowBills.jsp

+ borrowBillsSuccess.jsp
« borrowReceipt.jsp

« printReceipt.jsp

Forwards der Action selectCustomer
+ selectCustomer auf selectCustomr.jsp

« loadCustomerData auf Action loadCustomerData

Forwards der Action loadCustomerData
+ loadCustomerData auf loadCustomerData.jsp
« borrowBooks auf Action borrowBooks

- borrowBills auf Action borrowBills

Forwards der Action borrowBooks
+ borrowBooks auf bookBooks.jsp

« borrowReceipt auf Action borrowReceipt

Forwards der Action borrowReceipt

« borrowReceipt auf borrowReceipt.jsp

+ printReceipt auf printReceipt.jsp

+ selectCustomer auf Action selectCustomer

« JloadCustomerData auf Action loadCustomerData

Forwards der Action borrowBills
« borrowBills auf borrowBills.jsp
« borrowBillsSuccess auf borrowBillsSuccess.jsp

» loadCustomerData auf Action loadCustomerData

i selectCustomer. jsp

o

url: fFormfselectCustomer . js

————irput———

A—electCustomer —

E‘ selectCustamer

name: selectCustomerForm

path: fselectCustamer

tvpe: de.lalluna.kutorial. mappin
gusecases, ackion, 3electC
uskornerfckion

B
L

lnadCustomerData

@ lnadCustomerData, jsp

E‘ loadCustomerData

—————ingut—————

url: JFarmifloadCustomerData
Jsp

rHoadCuskgmerData —

borrowBooks

selectiustamer

name: loadCustormerDataForm
path: floadCustomerData

type: de.laliluna.tutarial.mappin
gusecases,action.LoadCu
stormerDakaickion

HoadCustomerData

E‘ borrowEooks

loadCustomerData

name: borrowBoaksForm

path: fborrowBooks

bype: de.laliluna.tutorial.map
pingusecases, action.B

|
E‘ borrowReceipk

—horr R edeipt
name:

orrowBooksAckion orrowR.eceipbaction
borrowBooks T
inpuk
inputbarrowReceipt

path: fborrowReceipk
bype: de.laliluna. tutorial.map
pingusecases, action.B

borrowR eceiptForm

prinkReceipt

@ borrowBooks. jsp

url: fFarmjborrowBooks, jsp

borrowEills

E‘ borrowEills

name: borrowEillsFarm
path: fborrowEills __
tvpe: de.laliluna.tutorial.map [

pingusecases,ackion.B
orrowBillsction —

input borrowEills

@ borrowEills.jsp

url: fFarmyborrawBils, jsp

@ borrowReceipt. jsp

url: fFormfborrowReceipk. jsp

——borrowBills3uccess

¥

¥

@ prinkReceipt. jsp

@ borrowBillsSuccess. jsp

url: fisp/printReceipt. jsp

url; fisp/borrowBillsSuccess, jsp

