Guide to Java Persistence and Hibernate

Sebastian Hennebrueder

Guide to Java Persistence and Hibernate
Sebastian Hennebrueder

Table of Contents

About the author, DOOK and VEISIONSeeiiiiiuiiieieitiie e eerree e e sbree s s ebra e e s s eaae e e s ssbaeesssenaeeeeeanns Viii
IO I8 S U 1o PR viii
B2 I 1= oo 0GRS viii
G I o] =AY A= £ o] SRR IX

R 11T [F o o SRR 1
1. INtroduction tO HIDEIMELEoouiiiieeee et 2

1.1. A first HIbernate eXamplecooooeoiiieieeeeee et 2
1.2. HIDEINEALE DBSICSeevieieeie ettt s nne e 19
2. Hibernate Concepts - State Of ODJECESccveiiiiieiiiie e st 21
2.1. The three stateS Of ODJECESooeiiieiiie s 21
2.2. Lazy initialization, a Hibernate problem ..o 23
3. WOrKing With ODJECEScceiiiiiieie ettt sttt et e s e st e e e neenaeeneas 27
3.1. Java Persistence Versus HIiDEINELEocoeveiiiiieieeesee e 27
3.2, HIDEMNEE AP ... ettt 27
3.3, ENLLYMANAgEr APl ...ttt 34
4. A more complex example — Web apPliCaLIONcccoviriirieriereee e 40
A1, SUMIMEIY .eiitiiiteeiee ettt eeeesse e ee e st e eseeesseeaseeebeeeaseaaseesaeeeaseeeseeamseesmeeenbeesaeeanseesnneanseas 49
IV =) o T a0 T U< = SRR 51
I = T= S Lol 1V =T o1 00 O 52
5.1. ANNOLELION VEISUS XML .oniiiiiiiee ettt 52
5.2. ANNOLELION MEPPING .euveneeiieieeiesieeie e sieeeeseesteeeesseesseeeesseesseeseesseessesneesseesesneessennes 53
TG T QI 1V =" o] o USSP 58
6. Primary K&Y MaDPINGooeoiiiieiieeieeiese ettt st e e s sbe et e saeesteeneesneeseeneesaeenee 63
6.1. Natural VErsus SUIfOQate [AScceeieeiiiieieeereeseee et ne s 63
I NS o 0= o N o PR 64
6.3. Generated With AULO SITALEJYcoveeierreeiieiesiesie et 64
6.4. Other ANNOLatiON SIFALEQIESc.eeiieeieiiieieeie ettt ee e e sreeeesneens 64
6.5. COMPOSITE 1 ...ttt s b e et e sreesbe et e sneesneeneeas 65
6.6. EqQuals and HashCOOEooeeiiiiiieeee e e 68
AT ® 1 aT= o\ I [B = SR 72
A R .= (0] I 0 ="o) o] o SRR 75
7.1. Selecting between List, Set, Map or array to hold many side.........cccceeevenieieenenen. 75
7.2. Uni- and Bi-directional relalionscocooieiirienieneeeesee e 84
ARG T 0= S oo (1 0o PSSR 86
A o R < T 1o o USSP 88
785 T 5 o ST 9
4 T 1 0 1 TSP TTRPRRUPR 104
2 5 5 00 PR 109
7.8. RECUISIVE FEIaiON ...ttt et s sne e 111
7.9. Typed relation (XIML ONIY) ..o e 113
7.10. Typed relation (annotation workaround)ccceeceeeeneniinieeneee e 115
8. Components = COMPOSItION MEPPINGooveereererrieerieeeeseeseeseesreeseeseesseesseseesseessesseessesssesses 119
8.1. Composition versus entity relalionsooceeeieenenie s 119
8.2. Composed Class iN 0N taI€ooeiiiiie e 120
8.3. Composition as set Of Many ClasSEScooviirieiieee e 123
8.4. EQUAlS IMPIEMENTALIONc.eoiuieieeieiieie ettt saeeeesneesse e 124
8.5. Composition as list of MaNY ClaSSESc.coceeiirieiiereee e 125

Guide to Java Persistence
and Hibernate

8.6. AQVANCEO AELAIISeoviiiierieeieeee e 127

8.7. COMPOSITION LiN:L ..eeiieiiieiieie e e ettt e st te e e sre et e sseesneenesaaesreenrennnens 127

8.8. Not included MapPPINGSccveveeieeieieiesieeriecee st ese e re e s e e e tesseesseensesneenrens 129

9. INNEITEANCE ...ttt bt bbbt et et bbb e neenes 131
0.1, USE CBSE ..ouviieieriisiesieet ettt st sttt sttt b et bbb b e bt st e Rt et et b e be bbb ne e 131

9.2. Overview on Mapping apProaChesSccccceeieieeiicre e 131

S G TS 1o | L= 1= o = 134

9.4. JOINEA INNENTANCEeoviiieiieeiieiee ettt b bbb nne s 137

9.5. Joined Inheritance With DISCIIMINGLOLccccuvierirerinieee e 140

9.6. Mixing Single table and JOINEdccoveeieieeseece e 142

O.7. UNION INNEITANCEviiviiieieieie ettt 142

9.8, XML INCIUTES ...ttt bbb nne s 145

9.9. MaApPPEU SUPES ClESSooiueeiiiieiieeiteee ettt e st et e esae e ae e e s reeseeneesneenneans 147

10. Lob with Oracle and POSIGreSOLcccviieieeieceese e ens 150
O 0 (0 =3 | TSRS 150
O @ = o PSSP 152

I © UT= Y71 o [= - L 156
111, USEFUL TOOIS .ottt bttt 156
O [ST PRPR 157
11.3. Criteria QUENTESuveeieeeii et eetee sttt s et e e see e ste e saaesbeesasesbeesaaesnbeesseesnseesreesnrenns 165
114, NGHVE SQL oottt st sttt ettt sbesbenbesneene e e 170

[11. Building applications and ArChiteCUIEcoeevieiieceere e 176
12. Data ACCESS ODJECLSveciiieeeiiiciecieste ettt te st ee et e e e tesaeesreesesneesaeeeesneesneennens 177
12.1. Best practiceS and DA ...ttt 177
12.2. Data ACCESS ODJECIS DA ...oocieciecece ettt 177
12.3. Weaving the appliCation SITUCIUIEccveieieeieeie e 178

13. Session and Transaction HaNdliNgccccccveiieieiieieere s 185
13.1. HIDENEE SESSIONeoviiiiieiiieiieiieie ettt st ne et e b nre s 185
13.2. JTA versus JDBC TranSaCiONScccevererenieririeiesiesiesiesiesiessesessesseesseseessesnessens 186
13.3. Transaction handling — default Patternccccoeceveeie e 186
13.4. IDBC transactions With ThreadLOCalccccoeviriiinininieneee e 187
13.5. JTA transaction with a single databasecccceceveeveeieceecece e 188
13.6. IDBC or JTA with the Spring frameworkcccvveveienieere e 190
13.7. Conversations and Session LITEIME ..o 190
13.8. CONCUITENE ACCESSoeueiiureeiueeeieesseeeseesseesseesseeaneesseeaneesneesseesneesseesnneaneesneeareens 194

14. Integration with other teChNOIOGIESccceeiiiiie e e 199
14.1. Hibernate and SPriNg ..c..ccceceeieeieeie e st e et e st e st ne e reeeesneenns 199
14.2. HIDENEE @Nd SETULSooveiiieieiesie et s 205

IV. Configuration, Performance, Validation and Full Text Searchcccoveviiveieevn e 208
15. Hibernate FUll TEXt SEAICNccoiiiiiiieerese et 209
16. PerformanCe TUNINGcceeieeieiieieeiesee e eie e s e esae e s e etesseesseeseeseesseessesnsesseenseensesneensens 212
16.1. Analysing performance Problemcccceieeiieie e 212
16.2. Iterating through relations — DalCheSccocveiiee s 213
16.3. Iterating through relations — SUDQUENTESccccvveieieeie e 214
16.4. Iterating through relations — SINGIE QUETYecvveeeeviice e 214
T = o1 (] o o [0S =SS 215
16.6. Iterating through large reSUILSELScccveeeieeiece e 216
G O - PSSP 217

A ©o a1 11011 = 1 o o S 224

Guide to Java Persistence
and Hibernate

17.1. CONNECLION POOIScoeeeeeeeeeeeeeeeeee et e e e e e e et e e e e e e e e e e eeeeeeens

A. Appendix

AL ANNOLALION REFEIENCE ...t e e e e et e e e e e e e e e e e e e e e e e e aeaennees

Index

List of Figures

7.1. Table structureccceeeeeeeeeeennn.

7.2. Supported Collections and Maps

Vi

List of Tables

6.1. Example of atable having a unique Integer as primary Keyccccoooeeeieeienieneene e 63
6.2. Example of atable having name and surname as primary KeYc.ccovceeverreenerienseeniesienseenens 63
6.3. Example of atable having a natural primary KEYccooeeeieenenieniese e 63
N ol CT s = (0 S L= 1 o =S SR 65
0 S 04T o [= o SRR 77
7.2. JPA ANNOLation CaSCaOE TYPES ...ooueiiieiieee ettt st saeesse e e saeesbeeneesreenaeeneens 87
7.3. Hibernate Annotation and XML CasCade tYPESc.cocveeereererieieerie e s 87
I T I =10 o (0 1Y 0SSR 205

Vii

About the author, book and versions

Revision Mai 2013

1. The author

Well, my name is Sebastian Hennebrueder. | am afreelancer and work astrainer, software developer
and architect. | am located at Bad Vilbel, a small town close to Frankfurt in Germany. | am
passionated about technol ogies, publish articles and participate in conferences like JavaOne in San
Francisco or Devoxx in Antwerpen.

Y ou can contract me for your projects.
Hibernate, Java Persistence and JEE training

| offer basic and advanced training in Europe, the training can happen onsite in your company
but you will find aswell aregular schedule for Frankfurt, Germany on my website

http://www.laliluna.de

With more than 25 trainings in Europe in the last 3 years, | have a solid experience. | can
teach in German, English and French.

Software development

| am afreelancer and you can contract me as software developer and/or architect. | have a vast
experience as software developer and architect in Hibernate / Java Persistence, Jooss Seam,
Spring, GWT and a number of other web framework.

2. The book

| want to provide you with an easy-to-follow introduction to Java Persistence and Hibernate including
not only code snippets but complete working examples. For this reason the guide is based on the
following principles:

Explanations with complete wor king examples Whenever something is explained you will find a
complete sample application. If a specific mapping is demonstrated you can find a sample application,
too. It shows how to insert, update, delete or query the classes included in this mapping. Larger
sampl e applications show the implementation of real applications using Hibernate in detail. Each
application has an increasing complexity. Cache configurations, deployment configurations for
particular application server rounds off the examples. Altogether the book provides about 30 mapping
examples + variations, 4 real projects and some smaller projects showing a specific configuration.

Potential problems areinvestigated in detail Hibernate has some problem zones where you can
easily make mistakes. These are covered in detail to help you to avoid these problems. Some topics
are LazyL oading, Session and transaction handling, optimistic concurrency and version handling.

viii

About the author,
book and versions

Best Practices One chapter is completely focussing on how to implement well designed Hibernate
applications. DAO patterns and business layers are discussed. Pros and cons and the logic behind this
structure are explained.

Focus on important features Deliberately, | did not explain some rare concepts which | consider
to be either not stable or very rarely used. Instead | referred to the corresponding chapters of the
Hibernate reference - the documentation available with Hibernate. In my opinion the Hibernate
reference is far too complex for people learning Hibernate. However, it is a valuable resource for
people who aready know Hibernate.

What thisbook isnot... The texts are short and frequently you are referred to parts of sample
applications. If you prefer larger narrative parts you should not read this book. Feel free to contact me
and to comment on the book in the forum at http://www.laliluna.de

Best Regards/ Viele Grilke

Sebastian Hennebrueder

3. Library Versions

This book covers Java Persistence 2 and Hibernate 4.

http://www.laliluna.de

Part I. Introduction

Chapter 1. Introduction to Hibernate

Hibernate is a solution for object relational mapping and a persistence management solution or
persistence layer. Thisis probably not understandable for anybody learning Hibernate.

What you can imagine is probably that you have your application with some functions (business logic)
and you want to save data in a database. Using Java, the business logic normally works with objects of
different class types. Y our application is object-oriented. Y our database tables are not object oriented
but relational.

The basic idea of object relation mapping - ORM isto map database tables to a class. One row of the
database data is copied to a class instance. On the other hand, if an object is saved, one row is inserted
in the database table.

Java Persistence Layer
‘ Class 'Customer’ ‘Glass ‘Address' ‘ Class 'Order ‘
Hibernate

.

Table '‘Customer’ Table ‘Order*

Id int Id int

Name varchar(255) Number varchar(10)
Street varchar(255) customer_fk int

City varchar(255)

Country varchar(255)

Saving datato a storage is called persistence. The process of copying of table rows to objects and vice
versais called object relational mapping.

1.1. A first Hibernate example

Asitiseasier to explain something after having shown areal example, we will develop our first
Hibernate application now.

Introduction to Hibernate

1.1.1. Introduction

Our use case is sweet. We will use an example from the honey production. Y ou need alot of bees
to get honey. Our use case includes Honey and Bee as model and a 1:n relation from Bee to Honey.
Using object oriented terms: There is a 1:n association between the class Bee and Honey.

Honey 1 Bee
Y
-id : Integer PR -id : Integer
-name ;. String ¥ -name : string

-honey : Honey
-bees : Bee = new HashSet=Bee bees

We will create a class Honey which is mapped to the table honey in the database and a class Bee
mapped to the table bee. The following picture shows our database schema.

honey i il bee
+id intd Nullable = falseglO—~ +id intd Mullable = fals
name warchari255) Nullable = true " name warchar(255) Mullable = true

LS

taste warchar(255) Nullable = true = #honey_id intd Nullable = true

In order to get complete our application, we must undertake the following steps:

create classes

create mapping from classes to tables

configure Hibernate libraries

configure the Hibernate datasource

write code to use our mapped classes

Sour ce code

For this example you will find the complete source code in the ebook. Normally, | show
only the relevant part of the source code in the ebook. But you can find the complete
source code in the provided sources.

1.1.2. Creating Java Project and classes

Create a new project using your development environment. | used Eclipse for this example. Using
Eclipse press the keys Ctrl+n (Strg+n) to create a new project. Select Java project. We will call it
FirstHibernateExample.

Create a new class named Honey in the package de.laliluna.example. Our class has four fields:
* Integer id —an Integer value as primary key

* String name — name of the honey

Introduction to Hibernate

* String taste — description of the taste
* java.util.Set<Bee> bees — bees, having produced the honey
Furthermore we need:

* Getter and setter methods for our fields. In eclipse you can generate them (Context menu _ Source
_, Generate Getter and Setter).

*» A default constructor

* Implementation of the Serializable interface

* Overwrite the toString method. We will need it for debugging.

Javaversion: | used Java generics, which was introduced with Version 5 (alias 1.5).
Annotations always starts with @.

Y our source code should ook like the code below:

Honey class.
package de. | alil una. exanpl e;

i mport java.io. Serializabl e;
i mport java.util.HashSet;
i mport java.util. Set;

public class Honey inplenments Serializable {

private |Integer id;

private String nane;

private String taste;

private Set <Bee> bees = new HashSet <Bee>() ;

public Honey() {

}

public Honey(String name, String taste) {
t hi s. name = nane;
this.taste = taste;

}

public Integer getld() {
return id;

}

public void setld(Integer id) {
this.id =id;

}

public String get Name() {
return nane;

}

public void setNane(String nanme) {
t hi s. name = nane;
}

public String getTaste() {
return taste;
}

Introduction to Hibernate

public void setTaste(String taste) {
this.taste = taste;

}

publ i c Set <Bee> get Bees() {
return bees;

}

public void setBees(Set<Bee> bees) {
thi s. bees = bees;

}
public String toString() {

return "Honey: " + getld() + " Nane: " + getNane() + "

+ get Taste();

! Requirements of domain classes

Tast e:

There are a couple of requirements for a mapped class, you should always consider to

meet:

* Anid property

» A default constructor (= no parameter) with at least protected scope. Either omit the

constructor or create an empty one.

* Implementation of the Serializable interface, if and only if you want to serialize your
entity. This may happen indirectly if you put an entity for example into aHT TPSession.
Hibernate does not require the Serializable interface in entities.

» A useful toString method for debugging. (recommendation)
Create a class Bee with the fields:
* Integerid

» String name

* Honey honey

Bee class.
package de.l al il una. exanpl e;

i mport java.io.Serializable;
i mport java.text.MessageFor mat ;

public class Bee inplenments Serializable {

private Integer id,;
private String nane;
private Honey honey;

public Bee() {

Thefield id is once again the primary key. Please don't forget the important requirements, | stated
above.

Introduction to Hibernate

}
public Bee(String name) ({

thi s. nane = name;

}
public Integer getld() {

return id;

}
public void setld(Integer id) {

this.id = id;
}
public String getName() {

return nane;

}

public void setName(String name) {
t hi s. name = nane;

}
publ i c Honey get Honey() {

return honey;

}
public void set Honey(Honey honey) ({

t hi s. honey = honey;

}
public String toString() {

return MessageFormat.format ("{0}: id={1}, nanme={2}", new Qbject[] {
get d ass() . get Si npl eNane(), id, nanme });
}
}

1.1.3. Hibernate configuration

The Hibernate configuration will define

* which database we connect to

* thetype of database (MySQL, PostgreSQL, Oracle, ...)
 Hibernate configuration settings

 classesor XML mapping files holding our mappings.

Create anew file named hibernate.cfg.xml in your src directory.

1.1.4. Annotation or XML

Y ou have to choices to map documents: Annotations and XML. They’ll be discussed later in this
book. | explain both approaches for this example.

If you can use Javal.5 adlias 5 or later, | recommend to use annotations.
Below you can find a configuration for PostgreSQL using annotation based mapping. Afterwards, |

will explain required changes for other databases and XML based mapping. Do not forget to change
the username and the password to suit your database configuration.

Introduction to Hibernate

hiber nate.cfg.xml.

<?xm version='1.0" encodi ng=" UTF-8" ?>
<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-// Hi bernat e/ H bernate Configuration DID 3.0//EN"
"“http://hibernate. sourceforge. net/hi bernat e-configuration-3.0.dtd">
<hi ber nat e- confi gur ati on>
<sessi on-factory>
<l-- postgre SQ configuration-->
<property nane="connection.url">
j dbc: post gresql : / /1 ocal host : 5432/ | ear ni nghi ber nat e
</ property>
<property name="connecti on. user nane" >post gr es</ property>
<property name="connecti on. passwor d">p</ property>
<property nane="connection.driver_cl ass">
org. post gresql . Dri ver
</ property>
<property nane="di al ect">
or g. hi bernat e. di al ect. Post greSQLDi al ect
</ property>
<property nane="cache. provi der_cl ass" >
or g. hi ber nat e. cache. NoCachePr ovi der
</ property>
<property nane="current_session_context class">thread</property>
<property name="hi bernat e. show_sql ">t rue</ property>
<property name="hi ber nat e. hbn2ddl . aut 0" >cr eat e</ pr operty>
<mappi ng cl ass="de. | alil una. exanpl e. Honey" />
<mappi ng cl ass="de. | alil una. exanpl e. Bee" />
</ sessi on-f act ory>
</ hi ber nat e- confi gur ati on>

At the beginning of the configuration, you can find the database connection. Afterwards, the dialect
is specified. Hibernate will trandate all queriesinto thisdialect. Then, | configured the cache
implementation and the session and transaction behaviour. The setting hbm2ddl.auto instructs
Hibernate to update or create the table schema when the configuration isinitialized. Y ou only have to
create the database.

The tag <mapping class> at the end of the file defines which classes are mapped using annotations. If
you want to use XML based mappings then you need to reference the XML mapping files instead:

<mappi ng resource="de/l al i |l una/ exanpl e/ Honey. hbm xm " />
<mappi ng resource="de/l al il una/ exanpl e/ Bee. hbm xm " />

Other databases

A configuration for MySQL requires the following changes:

<property nane="connection. url">jdbc: nmysql://| ocal host/| earni nghi ber nat e</ pr operty>
<property name="connecti on. user nane" >r oot </ property>

<property nane="connecti on. passwor d">r </ property>

<property nane="connection.driver_cl ass">com nysql .jdbc. Driver</property>

<property nane="di al ect " >or g. hi bernat e. di al ect . MySQLDi al ect </ pr operty>

If you want to use another database, you must find out the name of the driver class and the name
of the dialect. Y ou can find all available dialects in the java package org.hibernate.dialect of the
hibernate.jar file.

Introduction to Hibernate

A short extract of frequently used dialects:
* MySQL5Dialect

* OracleDialect

» SybaseDialect

* SQLServerDialect

« HSQLDialect

» DerbyDialect

The connection.url isanorma JDBC connection URL.

1.1.5. Mapping

With the mapping we define in which table column afield of aclassis saved. As already stated, we
have two options for the mapping. The first one is based on annotation, it is new and the future and
| recommend to useit. But it requires Java 5. The second one is based on XML mapping files. | will
explain both:

Annotation mapping

An annotation always starts with an @. Y ou just have to add annotations to your javafile.
Annotations must be imported just like other classes.

Honey class with annotations.

i mport javax. persistence. Entity;

i mport javax. persi stence. Gener at edVal ue;

i mport javax. persi stence. Generati onType;

i mport javax. persi stence. |d;

i mport javax. persi stence. OneToMany;

i mport javax. persi stence. SequenceCener at or

@ntity
@equenceCener at or (nane = "honey_seq", sequenceNane = "honey id_seq")
public class Honey inplenents Serializable {

@d

@zener at edVal ue(strat egy=Cener ati onType. SEQUENCE, gener at or =" honey_seq")
private |nteger id;

private String nane;

private String taste;

@neToMany(mappedBy="honey")

private Set <Bee> bees = new HashSet <Bee>() ;

The annotation @Entity defines that our class is amapped class. The primary key is defined by
the @Id annotations. It is generated by Hibernate using a database sequence. It is defined with
@SequenceGenerator beforeit is used by theid (@GeneratedValue).

The annotation @OneToMany describes that the field bees is a 1:n association to the class Bee. The
foreign key is defined in the class Bee. Therefore, we have to add the parameter mappedBY.

Introduction to Hibernate

The class Bee uses two other annotations. @ManyToOne describes the association/relation from class
Bee to Honey. With the annotation @JoinColumn we configure that the table bee contains aforeign
key column. We did not specify a column name, so Hibernate will choose honey id.

Bee class with annotations.

i mport j avax. persistence. Entity;

i mport j avax. persi stence. Gener at edVal ue;

i mport javax. persistence. GenerationType;

i mport javax. persi stence. |d;

i mport j avax. persi stence. Joi nCol um;

i mport j avax. persi stence. ManyToOne;

i mport j avax. persi stence. SequenceGener at or

@ntity

public class Bee inplenments Serializable {
@d
@xner at edVal ue(strategy = Cenerati onType. SEQUENCE, generator = "bee gen")
@equenceCener at or (nanme = "bee_gen", sequenceNane = "bee id_seq")

private Integer id;
private String namne;

@/manyToOne
@oi nCol umm
private Honey honey;

Other databases

If your database does not support sequences, you might try

@d
@zxener at edVal ue(strat egy=Cener ati onType. AUTO)
private Integer id;

This selects a generator depending on the configured database dial ect.

XML mapping
Y ou only need the XML mapping files, if you don’t use annotations.

In the mapping file the mapping from our class Honey to the database table honey is configured.
Create afile Honey.hbm.xml in the package de.laliluna.example.

Honey.hbm.xml.

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE hi ber nat e- nappi ng PUBLI C "-// Hi bernat e/ Hi ber nat e Mappi ng DID 3. 0/ / EN'
"http://hibernate. sourcef orge. net/ hi ber nat e- mappi ng-3. 0. dtd" >
<hi ber nat e- mappi ng package="de. | al i | una. exanpl e" >
<cl ass nane="Honey" tabl e="t honey" >
<id nane="id" colum="id">
<gener at or cl ass="sequence" >
<par am nane="sequence" >honey id_seq</ paranr
</ gener at or >

Introduction to Hibernate

</id>
<property nane="name" colum="nanme" type="string" />
<property nane="taste" colum="taste" type="string" />
<set nane="bees" inverse="true">
<key col um="honey_i d"></key>

<one-t o- many cl ass="Honey" />
</set >

</ cl ass>

</ hi ber nat e- mappi ng>

The tag <id> specifies the primary key and how it is generated. Normal fields are mapped to a column
using the <property> tag. If we didn’t specify a column name (column="xyz"), than Hibernate would
have chosen the name of the field as default column name.

<set> describes the relation to the class Bee.

Our example used a sequence to generate the id. If your database does not support sequences, you
might try

<generator class="native"/>

Thiswill choose a generator depending on your database dialect.

Why using type="string” and not type="java.lang.String” ?

The Hibernate type can be more precise than the javatypes. A database field like date, timestamp,
time is always handled by ajava.util.Date. When you define atype as java.util.Date Hibernate does
not know which kind of database type to choose when it generates tables. Thisiswhy | use Hibernate

typesin general.

In most cases you don’t need to set the type. Hibernate will guess the column type from the Java class.

Needed Libraries

To use Hibernate, we need a couple of libraries, alias JAR files.

Maven Setup

In the sample projects, | have used Maven dependencies. If you know Maven, just copy the POM
from the source code and use it. | have declared all dependencies in a parent pom.xml, which isin the

root of the workspace.

Just switch into the FirstHiber nateAnnotation directory and input

nvn dependency: resol ve

in ashell. Alternatively, you can choose a run task from within Eclipse as well by right-clicking on a
pom.xml and choosing "Run..."

Non Maven Setup

If you want to add the libraries manually, hereisalist of required libraries and versions.

10

Introduction to Hibernate

In Eclipse Open your project properties, select “Java Build Path”, click on “Add External Jars’ and
add at least the libraries shown below to your project path.

Included in the Hiber nate Core Download.

+- junit:junit:jar:4.5:test

+- org.slf4j:slf4j-1og4j12:jar:1.6.0:conpile

| +- org.slf4j:slf4j-api:jar:1.6.0:conpile

| \- log4j:log4j:jar:1.2. 14:compile

+- ¢3p0:c3p0:jar:0.9.1.2: compi |l e

+- org. hi bernat e: hi bernate-core:jar:3.6.4.Final:comile

| +- antlr:antlr:jar:2.7.6:conpile

| +- conmons-col |l ections: commons-col | ections:jar:3.1:conpile

| +- don¥j:domdj:jar:1.6.1:conpile

| +- org. hibernate: hi bernat e-conmons-annotations:jar:3.2.0.Final:conpile
| +- org. hibernate.javax. persistence: hi bernate-jpa-2.0-api:jar:1.0.0.Final:conmile
| \- javax.transaction:jta:jar:1.1:conpile

+- javassist:javassist:jar:3.9.0. GA:conpile

Some projects use caching and Hibernate validation.

Included in Hibernate Core, Hibernate Validator and Ehcache Download.

+- org. hi bernat e: hi ber nat e- ehcache:jar: 3. 6. 4. Final:conpile
+- net.sf.ehcache: ehcache-core:jar:2.4.2:conpile

+- org. hi bernat e: hi bernate-validator:jar:4.1.0.Final:conpile
| \- javax.validation:validation-api:jar:1.0.0.GA conpile

Database Driver.

+- postgresql: postgresql:jar:8.3-603.jdbc3: conmpile
\- hsql db: hsqgl db:jar:1.8.0.7: conpile

Database Driver

We need a database driver as well. Find the appropriate JDBC Driver for your database and add it to
the project libraries.

| used PostgreSQL. Y ou can get the driver from http://jdbc.postgresgl.org/ . Y ou can use the JIDBC 3
driver if you are running a current j2sdk like 1.4 and 1.5/5.0.

For MySQL you can use the MySQL connector which can be found at http://www.mysgl.com/
products/connector/j/

An Oracle database driver is available at Oracle: http://www.oracle.com

1.1.6. Create a session factory

A session factory isimportant for Hibernate. As the name aready indicates, it creates Hibernate
sessions for you. A session isal you need to access a database using Hibernate. In addition, a session
factory initialises your Hibernate configuration.

We need to distinguish Annotation and XML once again. Here comes the Annotation version:

11

http://jdbc.postgresql.org/
http://www.mysql.com/products/connector/j/
http://www.mysql.com/products/connector/j/
http://www.oracle.com

Introduction to Hibernate

Create a class named I nitSessionFactory in the package de.laliluna.hibernate and add the source
code below. This class guaranties that there is only once instance (Singleton pattern) and that the
initialisation happens only once when the class is |oaded.

package de. |l al il una. hi ber nat e;

i mport org. hi bernat e. Sessi onFact ory;
i mport org. hi bernate. cfg. Annot ati onConfi gurati on

public class InitSessionFactory {
/** The single instance of hibernate SessionFactory */
private static org. hi bernate. Sessi onFact ory sessi onFactory;
private InitSessionFactory() {

}

static {
final Configuration cfg = new Configuration();
cfg.configure("/hibernate.cfg.xm");
sessi onFactory = cfg. buil dSessi onFactory();

}

public static SessionFactory getlnstance() {
return sessi onFactory;

}

1.1.7. Configuring Log4J

Hibernate uses log4j as logging output. As you can see above we added the log4j library. This library
needs a configuration file in the source directory or it welcomes you with the following error.

| og4j : WARN No appenders coul d be found for |ogger (TestClient).
| 0g4j : WARN Pl ease initialize the | og4] system properly.

Create afile named log4j.properties in the root directory. We will configure a simple logging output in
the Console.

configuration is adapted from ww. hi bernate. org

direct | og messages to stdout

| og4j . appender . st dout =or g. apache. | og4j . Consol eAppender

| og4j . appender . st dout . Tar get =Syst em out

| og4j . appender . st dout . | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender . st dout . | ayout . Conver si onPat t er n=%{ ABSOLUTE} %p %{1}:% - %Hn
set log levels - for nore verbose | oggi ng change 'info' to 'debug'
| og4j . r oot Logger =debug, st dout

| og4j . | ogger . or g. hi ber nat e=i nf o

#l og4j . | ogger . or g. hi ber nat e=debug

| og just the SQ

| og4j . | ogger . or g. hi ber nat e. SQL=debug

1.1.8. Create database and tables

Create a database with MySql or PostgreSQL or anything you like. Call it firsthibernate. Thisisthe
same database name, we used in the hibernate.cfg.xml.

12

Introduction to Hibernate

We have defined in hibernate.cfg.xml that the tables should be recreated each time when the
Hibernate configuration isinitialized.

<property name="hi ber nat e. hbn2ddl . aut 0" >cr eat e</ pr operty>

The setting create will drop and create any tables. It is only suitable during development. Y ou might
use update as well. In this case Hibernate tries to update existing tables or create missing tables. This
works in most cases but not always. Therefore, | recommend to disable this for production.

1.1.9. Create a test client

We will create a Java class, which will create, update, delete and query our data.
Create a Java Class TestExample in the package de.laliluna.example.

Please ook through the source code carefully and try it. | will just give you some general informations
before:

 you always need a session to access data
» all access read and write happens within a transaction

» when atransaction fails you should role back your transaction (see the discussion below aswell). In
this first example, we will skip the exception handling.

In the main method we call other methods creating, updating, deleting and querying data.

package de. | al il una. exanpl e;

i mport java.util.lterator;

i mport java.util.List;

i mport org. apache. | og4j . Logger

i mport org. hibernate.Criteria;

i mport org. hi bernat e. Fet chibde;

i mport org. hi bernate. Hi ber nat e;

i mport org. hi bernate. Sessi on;

i mport org. hi bernate. Transacti on

i mport de.laliluna.hibernate.|nitSessionFactory;

public class Test Exanpl e {
private static Logger |og = Logger.getLogger(Test Exanpl e. cl ass) ;
public static void main(String[] args) {
/* clean tables */
cl ean();

/* sinple create exanple */
cr eat eHoney() ;

/* relation exanple */
createRel ation();

/* del ete exanple */
del et e();

/* update exanple */
updat e() ;

13

Introduction to Hibernate

}

/* query exanple */
query();

The method createHoney creates a new object and savesiit in the database by calling session.save.

private static Honey createHoney() {

}

Honey forest Honey = new Honey();
f or est Honey. set Nanme("f orest honey");
for est Honey. set Taste("very sweet");

Sessi on session = |InitSessionFactory. openSessi on();
Transaction tx = session. begi nTransacti on();

sessi on. save(f or est Honey) ;

tx.commt();

sessi on. cl ose();

return forestHoney;

The method update creates a new object using our last method, changes the name and updates the
object using session.update.

private static void update() ({

}

Honey honey = creat eHoney();

Sessi on session = |nitSessionFactory. openSession();
Transacti on tx = session. begi nTransacti on();
honey. set Name(" Mbdern style");

sessi on. updat e(honey) ;

tx.commt();

sessi on. cl ose();

The method delete creates an object and deletesiit by calling session.del ete.

private static void delete() {

}

Honey honey = creat eHoney();

Sessi on session = |nitSessionFactory. openSession();
Transaction tx = session. begi nTransacti on();

sessi on. del et e(honey) ;

tx.commt();

sessi on. cl ose();

The tables are emptied with the method clean. The method session.createQuery creates a new query
and runsit by calling executeUpdate.

private static void clean() {

}

Sessi on session = | nitSessionFactory. openSession();
Transacti on tx = session. begi nTransacti on();

session. createQuery("del ete from Bee") . execut eUpdat e() ;
sessi on. creat eQuery("del ete from Honey"). execut eUpdat e() ;
tx.commt();

sessi on. cl ose();

The method createRel ation shows, how to create objects and set an association between these objects.
Thiswill write aforeign key relation to the database.

private static void createRelation() {

14

Introduction to Hibernate

}

Sessi on session = |nitSessionFactory. openSession();
Transaction tx = session. begi nTransacti on();

Honey honey = new Honey();

honey. set Name(" country honey");

honey. set Tast e(" Del i ci ous");

sessi on. save(honey) ;

Bee bee = new Bee(" Sebastian");

sessi on. save(bee);

[* create the relation on both sides */
bee. set Honey(honey) ;

honey. get Bees() . add(bee) ;

tx.commt();

sessi on. cl ose();

The method query shows how to query all honeysin the database. The call to session.createQuery
creates the query and list() runs the query and returns a list of Honey objects.

private static void query() {

}

Sessi on session = |nitSessionFactory. openSession();
Transaction tx = session. begi nTransacti on();
Li st honeys = session.createQuery("select h fromHoney as h").list();
for (lterator iter = honeys.iterator(); iter.hasNext();) {
Honey el ement = (Honey) iter.next();
| og. debug(el enent) ;
}
tx.comit();
sessi on. cl ose();

Thiswas afast example and it is not required to have understood anything.

roTE
Lﬂ

L essons learned

* how to create a class, which can be used for mappings (constructor, Seriaizable, ...)
* how to add the mapping

* how to create, update and delete entries

* how to create a simple query

Exception handling wasignored in this example

Y ou should be aware, that in case of an exception, some databases keep resources open,
if you do not rollback or commit atransaction. | will speak about transaction handling in
detail in chapter Session handling and Transactions Chapter 13, Session and Transaction
Handling.

Deployment in Jboss Application-Server

If you try to use the code by a JSP and deploy it to JBoss or deploy any of the later
examples to Jooss you might encounter problems. The reason is that Jooss provides
already Hibernate libraries and a configuration which conflicts with the Session
configuration, | chose for the examples. Either use a servlet engine like Jetty or Tomcat

15

Introduction to Hibernate

or have alook in chapter Session handling and Transactions Chapter 13, Session and
Transaction Handling explaining how to configure Hibernate in JTA environments.

1.1.10. Using MyEclipse for Hibernate projects

MyEclipseisaplugin provided by Genuitec on http://www.myeclipseide.com/ . | useit for
development of all kinds of Web applications including Hibernate, EJB 2 and EJB3. MyEclipse

isvery up-do-date with the support of current versions of web frameworks, EJB and of course
Hibernate.

1.1.11. Adding libraries and Hibernate capabilities
Create awebproject first and open the context menu of the project (click with right mouse button on
the project in the package view). Select add Hibernate capabilities.

e

Restore from Local Histary. .. | ”

MyvEclipse Add and Remove Project Deployments., ..

Propetties Alt+Enter Add Struts Capabilities. ..
Add JSF Capabilities. ..
Add 15TL 1.0 Libs

Add Hibernate Capabilities. ..

Doin YMiaclak

The wizard let you select the Hibernate version and add the needed libraries to your project.

| recommend to add the libraries to the build path and not to copy them to the lib folder of the
application. Thiswill allow to set up different configurations for deployment during development and
staging.

Hibernate Support for MyEclipse -
Enable project for Hibernate developrment ¢ ’

Select MyEdlipse/User Libraries
Show: v MyEclipse Libraries | User Libraries

Hibernate 3.0 Core Libraries - <MyEclipse-Library =
[Hibernate 3.0 Advanced Suppart Libearies - <MyEclipse-Library =

Yiew and edit libraries. ..

JAR Library Installation
{* add checked Libraries to project build-path

[Copy checked Library Jars ko project Falder and add ko build-path

| 2

16

http://www.myeclipseide.com/

Introduction to Hibernate

To stage your finished application you should pack all the libraries with your project. You can
configure in the project properties to deploy user libraries like the MyEclipse library in your
application server.

& Properties for Test |Z|E|

kype filker test = MyEclipse-Wehb =t
Info
BeanInfo Path Conkext Rook] Tag Libraries Deployment l
Builders

Jawa Build Path Web Project Dependent Project Deployment Policy

+- Java Code Style

+- Jawa Compiler
Javadoc Location
MyE clipse-UML
MyEclipse-yalidation
MyEclipse-Web

How should dependent Java projects be handled during deplovment?
¥ Use workbench default settings Configure workspace settings. ..
r

l.-h
o

MyEclipse-xDoclet
Omondo Profiles

Library Deployment Policies
Project References

Web Project deplovments should inchide:
[Use workbench default settings Configure workspace settings. ..

[Jars on ‘Web Project build-path

Iv ars in Web Project's user libraries:

[Jars exporked by dependent Java projects

[User library jars exparted by dependent Java projects

During development, | prefer to copy all the Hibernate and Struts libraries to the shared library
directory of the application server. | configure the MyEclipse configuration in the project properties to
not deploy any user libraries. This makes redeployment very fast.

L ets continue with the wizard. Y ou can select an existing Hibernate configuration file
hibernate.cfg.xml or you can create a new one.

& New Hibernate Project

Hibernate Support for MyEclipse .
Create Hibernate XML configuration file " *

Hibernate config file: ™ Mew " Existing

Browse. ..

Configuration Folder: | src

Configuration File Mame: | hibernate.cFg.xml

[Open configuration File after wizard completion

Then you can select a database connection profile for a JDBC connection or select a INDI datasource.
A connection profile is the complete configuration of a JDBC database with connection string, user
name, password and DB driver.

A connection profile can be used for the database browser as well to seetables, triggers, columns. The
database browser alows to generate Hibernate mappings from existing tables as well.

17

Introduction to Hibernate

Hibernate Support for MyEclipse -
specify Hibernate database connection details L] *

I+ Specify database connection details?

DataSource: (* Use JDEC Driver " Use JNDI DakaSource

DE Profile;

¥ Copy DB Profile JDBC Driver Jar(s) ko project and add to classpath?

Connect URL: | jdbc:postgresgl: /flocalhost: 5432/ learninghibernate

Driver Class: | arg, postgresql, Driver Erowse, .,

Usernarme: | poskgres

Password: | *

Dialect: |F‘|:ustgreSQL j Search...

Finally you can create a session factory. | prefer to use my own session factory asit is simpler but the
MyEclipse session factory works perfectly, as well.

Create Hibernate SessionFactory for MyEclipse -
Define SessionFactory properties " * ‘

[Ereate SessionFackary class?

| .|
| 7

fa (=

1.1.12. Generate Hibernate mappings from existing
db

Open the View DB Browser (MyEclipse). If you cannot find it open the ,, Show View* Dialog and
select in the MyEclipse Enterprise Workbench the DB Browser.

1| Window Help

J e Window

~ Open Perspective k|
Show Yiew 3 E Console =
Custamize Perspective. .. Tg Hierarchy Ale+shift+C, T
Save Perspective As. ., 5. Mavigatar
Reset Perspective O— : -
s e o= Qutline Alt+Shift+0, O
Clase All Perspectives % Package Explorer alt+shift+0, P
Miavigahian s Search Ale+shift+G, 5

2| Tasks

Preferences

18

Introduction to Hibernate

Open the connection profile you specified before.

Select the two tables we have just created. Right click and choose Create Hibernate Mapping.

£ MyEclipse - Eclipse Platform

File Edit Mawigate Search Project MyEclipse R
| w |98~ [3-0-%-

FF'ElI:kElI;IE-' Explarer W
BB
=

- Open conneckion... |

ﬂ e
7 Edit
Copy
& Delete

- [J library-web
-4 Connected to library-weh
-5 information_schema
...5@ pg_catalog
=-88 public
f- 15 INDEX
SEQUENCE
SYSTEM IMNDEX
IYSTEM TABLE
SYATEM TOAST INDER
SYSTEM TOAST TABLE
SYSTEM VIEW
TABLE
TEMP f Generate Select in SOL Editor
TEMP Edit table data
3 b VIEW i’%a Refresh Table
----- [pasqlFehlerbeheb

Bl R e

FH Create Table Scripk

3' Create Hibernate Mapping

Copy Mame

Follow the wizard to select where to create the mapping files and classes. Y ou can even generate
DAOs.

1.2. Hibernate basics
1.2.1. What is Hibernate?

As explained in chapter Basic idea of Hibernate Chapter 1, Introduction to Hibernate, Hibernate
isan object relational mapping solution. It provides all the features you need to create a powerful

19

Introduction to Hibernate

persistence layer for your application. This chapter explains some basic features and will explain the
Hibernate architecture. Y ou should read thisfirst if you do not want face any problems later.

1.2.2. Powerful mapping

The mapping is not limited to one class or to one table but you can also map awide range of object-
oriented concepts. The following classes represent an inheritance hierarchy.

public class Plant {
private Integer id;
private String namne;

public class Tree extends Plant {
private bool ean hasFruits;

public class Flower extends Plant {

private String col or;

They can be mapped to one table containing al columns and having a discriminator column, which
distinguish what type arow is. In the picture below plant_type is the discriminator.

id | name | color has_fruits plant_type
[PK] int4 text text bool varchar
] My plankt FALSE de.laliluna.inheritancel . Plant
I Apple tree TRLE kres
I Blue Flovwer blue FaLSE Flowwer
17 My plank FALSE de.laliluna.inheritancel.Plant

There are other options to map classes and subclasses, e.g. One table per subclass.

Another feature is the mapping of relations 1:n, m:n and 1:1. Y ou can map components. For example
you create an Address component which is used in Customer and Supplier.

1.2.3. Powerful query languages

Hibernate provides a powerful object-oriented query language named Hibernate Query Language

(HQL).

select i fromlnvoice i inner join fetch i.order

If you have to create queries dynamically, you can use the Hibernate Criteria Queries. The following
query filters the player by name, but only if the name is not null:

Criteria criteria = session.createCriteria(Pl ayer.cl ass);
if(name !'= null)

criteria.add(Restrictions.eq("nanme", nane));
Li st players = criteria.list();

If you need native SQL or a stored procedure, you can call it from Hibernate as well.

20

Chapter 2. Hibernate Concepts - State of
Objects

States of an entity is avery important concept of Hibernate. An entity can have different states. Using
Hibernate is different from using SQL. If you call session.save(customer Object) then there is no insert
into customer ... query into the database. Hibernate will set theid property (if theid is generated) and
bind the entity to a persistence context. The persistence context is synchronized with the database
when transaction.commit() is called.

This approach has various advantages:

* You can continue to update an entity and all changes to the Java object are persisted with asingle
database insert/update.

» The update of a database table row causes arow lock. Having arow lock only for a short moment at
the end of atransaction, prevents locking of concurrent users or dead lock situations.

2.1. The three states of objects

An object can have three states. transient, persistent and detached.

When it isjust created and has no primary key, the state is called transient.

persistent session is closed
- SESTION Save changes are not reflected in the database
FESEion.close

¥ ¥

| primary key iz not defined ﬁ |

detached
seszsion is open and transaction is started

changes are reflected in the database T -

3
zession lock or update

Car car = new Car();
car. set Nane(“ Porsche”);

When the session is opened and the object isjust saved in or retrieved from the database. This state
is called persistent. During this state Hibernate manages the object and saves your changes, if you
commit them. Below you can see an example. A car is saved and the name is changed afterwards. As
the car isin persistent state, the new name will be saved.

Sessi on session = Hi bernat eSessi onFactory. current Session();
t X = session. begi nTransaction();

21

Hibernate Concepts
- State of Objects

sessi on. save(car);
car. set Nane(“ Peugeot ") ;
tx.commt();

The following code loads a car by id and changes the name. There is no session.update involved.
Every object which isloaded by session.get, session.load or a query isin persistent state. It is stored in
the persistence context of the session. When tx.commit() is called, Hibernate will flush the persistence
context and all not yet written insert, update and del ete statements are executed.

Sessi on session = Hi bernat eSessi onFactory. current Session();

t X = session. begi nTransaction();

Car car = (Car) session.get(Car.class, 4711);

car. set Nane(“ Peugeot ”) ;
tx.commt();

When the session was closed, the state changes to detached. The object is detached from its session.

Understanding these states isimportant in order to know how to deal with instances. Imagine you do a
web dialogue

* retrieve an instance of Car from the database

* saveinstancein the HTTP request and close session
» show adialog to edit the instance

* user submitsform

Now, you would normally save the changes. But you cannot just call

transacti on = session. begi nTransacti on();
car . set nane(newNane) ;
transaction. comm t();

If you want to save the changes, you have to reattach your instance. This means the instance must be
brought to a persistent state. Y ou can not save an instance when it isnot in persistent state, except if it
was transient before and has no primary key set.

Y ou must reattach an object before you can update it.
transacti on = session. begi nTransacti on();
sessi on. bui | dLockRequest (LockOpti ons. NONE) . | ock(car);

car . set nane(newNane) ;
transaction. comm t();

The following picture show the change of status how it could happen in aweb application.

Deprecation

Y ou might be aware of the method session.lock(car). It is deprecated since Hibernate 3.6.

22

Hibernate Concepts
- State of Objects

(]SI’ dialog - new Iur-ey)

(Business Layer - save honey)]

(]SI’ dialog - edit huney)

U-U-U-U

(Husiness Layer - save tlm‘nges)

How to deal with reattaching and state changes carefully is explained in detail in the chapter Working
with Objects Chapter 3, Working with Objects.

2.2. Lazy initialization, a Hibernate
problem

There is apopular exception which alot of Hibernate newbees encounter. In order to prevent this
exception you need to understand the concept of Lazy Initialization.

1) When Hibernate reads data from the database, the datais hold in the session. Y ou can save
references to the data - for example in your HTTP request. Once the transaction is committed and the
session is closed you can not load any further data with this session.

In the first example, we have seen that Honey has a collection of Bee. If we load a Honey instance,
Hibernate will not load the bees automatically. There is a good reason for this behaviour. Imagine you
load a Company and get al orders, order details and articles. Basically you load most of your database
just by loading a single Company object. Thiswould result into a memory problem. Therefore
Hibernate loads only the first object and replaces collections of other objects by a proxy. If you access
the proxy, Hibernate uses the current session to initialize the proxy and load the entries from the
database.

2) Imagine a Struts framework application. If you do not know Struts: it is aframework to develop
web applications. When a user requests something, e.g. he has submitted aform on awebsite, the
following happens:

» central servietiscaled

* servlet looks up application logic for the request and calls the application logic

23

Hibernate Concepts
- State of Objects

* application logic opens a session, saves or retrieves data

* application logic stores retrieved data in the request and closes the session
* control returns to servlet

» sarvlet calsaJSPto render the dialog

* the JSP uses the datain the request

What is the consequence of 1) and 2)? When you look through the process 2) you can see that

the session is aready closed, when the dialogue is rendered. Y our application logic has finished
processing. If you have not initialized any objects while your session is open, you will not be able
to display them. Have alook on the following diagram, which explains the situations quite well.
\newline

When you access a not initialized object you will get aLazylnitializationException explaining that the
session is already closed.

Servlet ISP Business Layer Hibemate Session Transaktion
I e I I]
L 1: call busingss layer L ! L I
, = 2 getSession - .
I 3 begin Transaction
: 4: spaichere D atph
: ;I i im Request 5: cornmit Fansaction
" Beeseas F——
< A K

|
2 call JSP dialog | -
|
|

9 Werwende Paten aus Request

f———————————

-————

When can this happen? | have mentioned that Hibernate can map relations. Imagine a class
department having a number of teams.

public class Departnment {
private |Integer id;
private String nane;

private Set teans = new HashSet () ;

If you want to output alist of departments and teams in your JSP, you must not only fetch all
instances of department but also all instances of teams which are associated with one of the
departments you are retrieving.

| told you that by default all relations are retrieved lazy. This means when you fetch a department,
Hibernate will not fetch the teams but create a proxy. When you access a team, the proxy uses the
current session to load the team from the database. A proxy can only retrieve data when the session is
open.

24

Hibernate Concepts
- State of Objects

Having relations in your mapping you must ensure that the object and related objects are initialized as
long as the session is open.

There are three solutions to this problem:
» Definelazy="fase" in your mapping
» Explicitly fetch the associated datain your query

* Make use of atrick and postpone the close of the session to alater time, when your JSP is already
rendered.

Thefirst solution is dangerous. Imagine arelation like

ApplicationUser _ KeyAccounter _ Customer _ Company _, &l customersof company _, all
orders of customers

Every access would load the complete database. Be very careful when you set lazy to false.

The second solution is simple but have some caveats. The trick is named Open-Session-In-View and
isexplained in chapter Open Session in View Section 13.7.2, “Lifetime until the view is rendered
(Open-Session-in-View)”.

The third solution initializes the data before closing the session.
We have two optionsto initialize data.

Approach a)

Li st honeys = session.createQuery("select h fromHoney as h").list();
for (Iterator iter = honeys.iterator(); iter.hasNext();) {

Honey el ement = (Honey) iter.next();

| og. debug(el enent) ;

Hi bernate.initialize(el ement. getBees());

Approach b)

honeys = session. createQuery("select h from Honey as h left join fetch h. bees")
dist()

If you use approach a) you have to call to call Hibernate.initialize on each proxy. Each call will
generate one query.

Approach b) generates a left join statement. We will only require one query.
Consider to use b) if you query alot of data.

Y ou must be aware of adraw back of this approach. Left join resultsin double entries for Invoice
when there are multiple orders. Think of the underlying sgl query, which leads to aresult like

invoice 1, joined order line 1
i nvoice 1, joined order line 2
i nvoice 2, joined order line 1

Hibernate will aswell add the invoice 1 multiple times to the result list.

25

Hibernate Concepts
- State of Objects

Y ou can use the following approach to get unique invoices (have alook in the HQL and Criteria
Query chapter for detailed examples):

session. createCriteria(Honey. cl ass) . set Fet chMode(" bees", Fet chibde. JO N)
.set Resul t Transfornmer(Criteria. Dl STINCT_ROOT _ENTITY).list();

sessi on. creat eQuery("sel ect h from Honey as h join fetch h. bees")
.set Resul t Transfornmer(Criteria. Dl STINCT_ROOT _ENTITY).list();

26

Chapter 3. Working with Objects

3.1. Java Persistence versus Hibernate

There are two APIs you can use with your mappings. One is the Hibernate Session and the other
one the Java Persistence EntityManager. The latter is standardised as Java Persistence which is the
replacement for Entity Beansin EJB 3.

With Java Persistence (JPA) 2.1 the API is good enough to be used instead of the Hibernate Session.
Some people argue that it is better to use the Entity Manager asit is already included in any JEE
application server like Glassfish, JBoss etc. and it allows to swap the Java Persistence implementation.
WEéll, in theory thisistrue. In practice you will use implementation specific optimisations for data
loading, caching and tuning. In fact, it is easier to deploy a Hibernate application on a different
application server.

My opinion

| prefer to use Hibernate for most cases as deployment on different application server or
servlet enginesis easier and | consider the criteria queries of JPA to be very hard to use
as compared to Hibernate criteria queries. But there is an exception as well. If JEE with
Session Beans is used as business layer technology, it is very easy to use Java Persistence.
It isalready provided. If in addition, the team has JPA experience, then | tend to prefer the
JPA API.

The EntityManager of Hibernate is based on the Hibernate session. Basically, the EntityManager
wraps a Hibernate session and adds some behaviour. The following code, shows how to get the
underlying Hibernate session to get access to additional APl methods like session.update.

Sessi on hi ber nat eSessi on = entityManager. unw ap(Sessi on. cl ass) ;
hi ber nat eSessi on. updat e(country);

| will introduce the Hibernate API first. Y ou will find the EntityManager API in the next chapter.

3.2. Hibernate API
3.2.1. Saving

Saving or persisting an object is actually not very complicated. The following code will do it.

Transaction tx = session. begi nTransacti on();
Concert ¢ = new Concert();

c.set Nane("Peter");

sessi on. save(c);

tx.commt();

If you debug the code of the first example, you will see that session.save does not create an insert
statement immediately but just selects the next sequence value. Thisis at least true, if you use a
sequence as id generator.

27

Working with Objects

It isthe tx.commit() of the transaction, which leeds to sending the SQL insert statement to the
database. Calling save makes an object persistent. If theid is configured to be generated then
Hibernate will ensure that it is generated and set the value of the id property. In addition the entity is
added to the persistence context of the session.

Per sistence Context

Simplified: the persistence context contains a map for each entity. The key of themap is
the id and the value is a composite of the entity instance itself and the original values of all
fields when the object was added to the persistence context. The latter allows Hibernate to
determine if a persistent object needs to be updated in the database.

When the persistence context is flushed, Hibernate will send all insert statements to the database,
determines al required updates by comparing the entities to the original field values and sends all
updates to the database and finally all deletes are sent.

The call to commit will cause aflush of the persistence context before the commit is sent to the
database.

There are multiple reasons for this behavior:
L essupdate statements

If you change multiple fields, add arelation while an entity isin persistent state, Hibernate will only
send one update statement at the end.

JDBC batching

Hibernate can group updates and make use of JDBC batching. Thisis more efficient as compared to
send statements one by one.

Reduced duration of locks

Sending an insert or update statement will cause arow or page lock depending on the database.
Sending such statement at the end just before the transaction commit, will cause the lock to exist only
for ashort timespan. It reduces the risk of concurrent users waiting for locks or dead lock situations.

Therefor, Hibernate will do only the minimum required to determine the id of the entity and add the
entity to the persistence context of the session. If theid is a generated value and the generator isa
sequence or atable, Hibernate will just select the value. But if the id is generated on inserting - for
example increment column in MS SQL server - then Hibernate needs to send the SQL insert statement
to get an id generated.

Saving becomes more complex, when you start to use relations.

We are having the following tables mapped as 1:n relation. We will define that developer_id must not
be null, an idea cannot exist without a developer. The database will create a not null constraint for the
column devel oper _id.

Devel oper d = new Devel oper () ;
| dea i dea = new | dea();

d. get | deas() . add(i dea) ;

i dea. set Devel oper (d);

28

Working with Objects

Y ou must take care that the ideais not saved before the developer_id is defined. If you save theidea
first, then the developer _id is not yet defined and you will receive a constraint violation exception.

idea

(__ developer +id int4
+id intd O~ name varchar(255)
L name varchar(255) L #developer id int4

Use case: no cascading defined

You must call save in the following order:

sessi on. save(devel oper) ;
sessi on. save(i dea) ;

Use case: cascading from developer to idea

Y ou only need to call

sessi on. save(devel oper);

3.2.2. Updating

Considerations

We talked in chapter Hibernate States Chapter 2, Hibernate Concepts - Sate of Objects about the
states of an object. Below you can find the figure we used in that chapter.

Updating an entity requires that you get your object in persistent state. One approach is to fetch an
object from the database within atransaction, apply your changes and commit the transaction.

persistent session iz cloged
- SEESion. save : changes are not reflected in the database
|
TESE0N.Close

¥ ¥

| primary key is not defined H |

detached
seszsion iz open and tranzaction is started T

changes are reflected inthe database -

O
Tession lock or update

sessi on. begi nTransacti on();

Visitor visitor = session.get(Visitor.class, aVisitorld);
vi sitor.set Nane(" Edgar") ;

sessi on. get Transaction().conmmit ();

In the code above there is no session.update. Working with Hibernate means working with objects and
states. Thisisabig difference compared to JDBC and sending insert and update SQL statements.

29

Working with Objects

Another approach to change an entity, isto reattach a detached object.

sessi on. begi nTransacti on();

sessi on. bui | dLockRequest (LockOpti ons. NONE) . | ock(visitor); // reattach visitor
vi sitor.set Nane("Edgar");

sessi on. get Transacti on().commit () ;

Detached objects

What is Reattaching?

Reattaching changes the state of an object from detached to persistent.

When you load an object within a session and close the session, your object is detached from the
session and any changes to the object have no influence to the session or the database.

This happens normally if you use the recommended approach of session handling. Read more about
session handling in chapter Session Handling Chapter 13, Session and Transaction Handling.

If you want to apply any updates you have to resttach the object to a session.
Reattaching

Y ou have different options to reattach an object to a session. The main difference between these
approaches are three criteria

» Can the object be changed before it is reattached.

* A second instance of the same instance (database Id) may exist in the Session.
» Doesthe object have to exist in the database.

Session.lock

Use session.lock when you expect that the object is unchanged and a new instance is not loaded within
the same session.

If you apply any changes before you lock the instance, your session will end in an inconsistent state.
To be more precise the changes will exist in the session but they will not be written to the database.
Hibernate thinks that it is unchanged.

contact 1. set Fi rst Name("Peter");

t X = session. begi nTransaction();

sessi on. bui | dLockRequest (LockOpti ons. NONE) . | ock(contact1, LockMode. None);
tx.commt();

lock(..) throws an org.hiber nate.NonUniqueObjectException when the instance is aready in the
session.

This problem can happen in the following situations:
Y ou have methods retrieving new object instances without using the existing detached object.

Y our object has arelation to another object X. When X and its relation are loaded then you have two
instances as well. For example when you load a Tree class that itself fetches the leafs and then you try
to reattach a leaf.

30

Working with Objects

Y ou have different options for the LockOptions:

LockOptions.NONE Tries to get object from cache, if not present read it from the database. It does
not create a database lock. LockOptions.READ Bypasses cache and reads object from the database.
LockOptions.UPGRADE Bypasses cache and creates alock using select for update statement. This
might wait for a database timeout. By default the lock request will wait for ever. If supported by your
database and your JDBC driver, you can set atimeout. A timeout value of 0 is nowait.

sessi on. get Transacti on() . begi n();

Sessi on. LockRequest | ockRequest = session. bui | dLockRequest (LockOpti ons. UPGRADE)
| ockRequest . set Ti mreCut (10) ;

| ockRequest . | ock(j ohn);

sessi on. get Transaction().conmmit ();

sessi on. cl ose();

If Hibernate does not find the object in the database it will throw an exception.

or g. hi bernat e. St al eCbj ect St at eExcepti on: Row was updated or del eted by anot her
transacti on (or unsaved-val ue mappi ng was incorrect): [de.laliluna.hibernate.Concert#1

Y ou should handle this Exception as it can happen when multiple users access your application
concurrently. Y ou can find an example in the Hibernate Struts chapter.

Session.update

If the object was changed, use session.update to save the changes in the database.

t X = session. begi nTransaction();
contact 1. set Fi rst Name("Peter");
sessi on. updat e(contact 1) ;
tx.commt();

The method throws an org.hiber nate.NonUniqueObjectException if an instance is already in the
session. | explained in the last paragraph, in which situation this can happen.

Session.saveOr Update

If you do not want to distinguish between inserting or updating an object, you can use
session.saveOrUpdate. Thisis acombination of save and update.

The following code will insert the object in the first statement and will automatically update it in the
second part.

| og. debug("saveOrUpdate to insert");

Sessi on session = Hi bernat eSessi onFactory. current Session();
sessi on. begi nTransacti on() ;

Concert ¢ = new Concert();

c.set Nane("Peter");

sessi on. saveOr Updat e(c) ;

sessi on. get Transaction().comm t ();

| og. debug("saveOrUpdate to reattach and update");
sessi on = Hi ber nat eSessi onFact ory. current Sessi on() ;

sessi on. begi nTransacti on() ;
sessi on. saveOr Updat e(c) ;

31

Working with Objects

sessi on. get Transaction().conmmt ();

Like lock and update, saveOrUpdate does not like a second instance of an object in the same session.
Please, have alook at the explanation in the session.lock chapter.

Session.merge

Use session.merge, if you consider that a new instance could exist in this session. Hibernate |oads the
object from the session or the cache or if it is not there from the database. Then it copies the values of
your old object to the new object and returns the loaded object. This object isin persistent state. The
old object is not attached to the session.

Pit fall using merge

Imagine you have created an object contact.

Cont act contact = new Contact();
cont act . set Fi rst Name("Peter");

Sessi on sessi on = sessi onFact ory. openSessi on() ;
Transaction tx = session. begi nTransacti on();
sessi on. save(contact);

tx.commt();

sessi on. cl ose();

Later you want to reattach your object to a Hibernate session and change the name to Peter. Do you
think you have successfully changed the name?

sessi on = sessi onFact ory. openSessi on() ;
t X = session. begi nTransaction();

sessi on. ner ge(cont act) ;

cont act . set Fi r st Name(" Peter4");
tx.commt();

sessi on. cl ose();

Y ou have not! The method merge looks up the object in the session. If it isnot found, a new instance
isloaded. Then the attributes of contact are copied to the found/created object. If you change contact it
has no influence on the object in the session. Y ou must apply your changes to the new object.

The solution isto assign the found/created object to the newlnstance variable. Than you can access the
variable directly.

Cont act newl nst ance =(Cont act) sessi on. mer ge(cont act) ;
new nst ance. set Fi r st Name(" Pet er 4") ;

3.2.3. Deleting

We have aready seen how to delete an object. A call to session.delete deletes an object.

sessi on = sessionFact ory. openSessi on() ;
sessi on. begi nTransacti on();

sessi on. del et e(concert);

sessi on. get Transaction().conmmit ();
sessi on. cl ose();

The object to delete does not have to be in persistent state, it can be detached.

32

Working with Objects

When the object was already deleted from the database before, you will encounter an exception.

org. hi bernat e. St al eSt at eExcepti on: Batch update returned unexpected row
count fromupdate: O actual row count: O expected: 1

To prevent this you might consider to validate that the object exists before deleting it. Y ou might even
consider to lock the object with a UPGRADE{} -lock.

Concert freshOnject = (Concert) session.get(Concert.class, concert.getld());
if (freshCbject !'= null)
sessi on. del et e(freshoj ect) ;

Further attention is needed when relations are used. Let us reuse the example we took above for the
update problem.

We will define that an idea can only exist with adeveloper. This means that developer_id must not be
null.

idea
[’ developer +id inta
+id intd [name varchar(255)

Y

L name wvarchar{255) g #developer id int4

In this case you cannot del ete a devel oper without deleting the ideas first. We have two options to
delete the objects.

Deletion without cascading

Reattach your developer, delete all the ideas first, and then delete the devel oper.
sessi on. bui | dLockRequest (LockOpti ons. None) . | ock(devel oper);
for (Iterator iter = devel oper.getldeas().iterator(); iter.hasNext();) {

| dea el enent = (ldea) iter.next();
sessi on. del et e(el enent) ;

}

sessi on. del et e(devel oper) ;
Have alook at the test class of the relation mapping examples for further examples.
Configure cascading

Cascading is explained in detailed in chapter Cascading Section 7.3, “Cascading”. Here, | present
only ashort description. If you have set cascading to delete or all, then you just need to delete the
developer and Hibernate will delete the ideas for you.

3.2.4. Additional commands

The Hibernate session provides more commands. | will explain the most important in this chapter.

If acolumn of atableis calculated by a database trigger, it might be required to reload the object. A
call to refresh will reread the object from the database.

sessi on. refresh(devel oper);

33

Working with Objects

An object in persistent state is stored in the persistence context and cannot be garbage collected even
if itisno longer referenced from your code. Sometimes you want to limit the size of the session for
example to keep memory consumption low. The command evict removes one object from the session.
If the object was changed, the SQL update statement is most likely not yet send to the database. If
you do not want to loose your changes, then you should call flush to send all open changesto your
database.

session. fl ush();
sessi on. evi ct (devel oper) ;

The manual call to flush isonly required in use cases as the one just described. By default flush is
called when you commit a transaction.

3.3. EntityManager API
3.3.1. Saving

Saving or persisting an object is actually not very complicated. The following code will do it.

EntityTransaction tx = entityManager. get Transaction();
t x. begi n();

Concert ¢ = new Concert("Peter");

ent it yManager . persi st (c);

tx.commt();

entityManager. cl ose();

If you debug the code of the first example, you will see that entityManager .persist does not create an
insert statement immediately but just selects the next sequence value. Thisis at least true, if you usea
sequence as id generator.

It isthe tx.commit() of the transaction, which leeds to sending the SQL insert statement to the
database. Calling persist makes an object persistent. If the id is configured to be generated then
Hibernate will ensure that it is generated and set the value of the id property. In addition the entity is
added to the persistence context of the session.

Per sistence Context

Simplified: the persistence context contains a map for each entity. The key of themap is
the id and the value is a composite of the entity instance itself and the original values of all
fields when the object was added to the persistence context. The latter allows Hibernate to
determine if a persistent object needs to be updated in the database.

When the persistence context is flushed, Hibernate will send all insert statements to the database,
determines al required updates by comparing the entities to the original field values and sends all
updates to the database and finally all deletes are sent.

The call to commit will cause aflush of the persistence context before the commit is sent to the
database.

There are multiple reasons for this behavior:

34

Working with Objects

L essupdate statements

If you change multiple fields, add arelation while an entity isin persistent state, Hibernate will only
send one update statement at the end.

JDBC batching

Hibernate can group updates and make use of JDBC batching. Thisis more efficient as compared to
send statements one by one.

Reduced duration of locks

Sending an insert or update statement will cause arow or page lock depending on the database.
Sending such statement at the end just before the transaction commit, will cause the lock to exist only
for a short timespan. It reduces the risk of concurrent users waiting for locks or dead lock situations.

Therefor, Hibernate will do only the minimum required to determine the id of the entity and add the
entity to the persistence context of the session. If theid is a generated value and the generator isa
sequence or atable, Hibernate will just select the value. But if theid is generated on inserting - for
example increment column in MS SQL server - then Hibernate needs to send the insert table to get an
id generated.

Saving becomes more complex, when you start to use relations.

We are having the following tables mapped as 1:n relation. We will define that developer_id must not
be null, an idea cannot exist without a devel oper. The database will create a not null constraint for the
column devel oper _id.

Devel oper d = new Devel oper () ;
| dea i dea = new | dea();

d. get | deas() . add(i dea) ;

i dea. set Devel oper (d);

Y ou must take care that the ideais not saved before the developer_id is defined. If you save theidea
first, then the developer _id is not yet defined and you will receive a constraint violation exception.

E idea
(—developer +id int4
+id int4 O~ name varchar(255)
L name varchar(255) . #developer id int4

Use case: no cascading defined

Y ou must call save in the following order:

enti t yManager . persi st (devel oper) ;
ent i t yManager . persi st (i dea);

Use case: cascading from developer to idea

Y ou only need to call

enti t yManager . persi st (devel oper) ;

35

Working with Objects

3.3.2. Updating

Consider ations

We talked in chapter Hibernate States Chapter 2, Hibernate Concepts - Sate of Objects about the
states of an object. Below you can find the figure we used in that chapter.

Updating an entity requires that you get your object in persistent state. One approach is to fetch an
object from the database within atransaction, apply your changes and commit the transaction.

persistent session iz cloged
- SeSsion. save : changes are not reflected in the database
FEssion.close

¥ &

| primary key iz not defined ﬁ |

detached
sezsion iz open and transaction is started T

changes are reflected in the database -

3
session lock or update

EntityTransaction tx = entityManager. get Transaction();

t x. begi n();

Country country = entityManager.find(Country.class, 4711);
country. set Name(" Uni ted Ki ngdoni);

tx.commt();

ent it yManager. cl ose();

In the code above there is no merge. Working with Hibernate means working with objects and states.
It is quite different from JDBC and sending insert or update SQL statements to the database.

Java Persistence has only one method to make an existing object persistent: merge.

Hibernate loads the object from the session or the cache or if it is not there from the database. Then it
copies the values of your old object to the new object and returns the loaded object. Thisobject isin
persistent state. The old object is not attached to the session.

Pit fall using merge

Imagine you have areference to a detached object. Y ou want to reattach your object to a
EntityManager and change the name to Peter. Do you think you have successfully changed the name?

EntityTransaction tx = entityManager. get Transaction();
t x. begi n();

ent i t yManager . ner ge(cont act) ;

cont act . set Fi r st Name(" Peter4");

tx.commt();

Y ou have not! The method merge looks up the object in the session. If it isnot found, a new instance
isloaded. Then the attributes of contact are copied to the found/created object. If you change contact it
has no influence on the object in the session. Y ou must apply your changes to the new object.

36

Working with Objects

The solution isto assign the found/created object to the newlnstance variable. Than you can access the
variable directly.

Cont act newl nstance = entityManager. nerge(contact);
newl nst ance. set Fi r st Name(" Pet er4") ;

3.3.3. Deleting

An object can be removed by calling entityManager.remove.

EntityTransaction tx = entityManager. get Transaction();
t x. begi n();

Contact nmerged = entityManager. nerge(contact);

ent it yManager. renmove(mer ged) ;

tx.commt();

entityManager. cl ose();

There is adifference compared to Hibernate Session API. Y ou need to make the object persistent
before removing it. When the object was already deleted from the database before, you will encounter
an exception.

org. hi bernat e. St al eSt at eExcepti on: Batch update returned unexpected row
count fromupdate: O actual row count: O expected: 1

Further attention is needed when relations are used. Let us reuse the example we took above for the
update problem.

We will define that an idea can only exist with adeveloper. This means that developer_id must not be
null.

idea
(developer +id inta
+id intd [name varchar(255)

Y

L name wvarchar{255) g #developer id int4

In this case you cannot delete a devel oper without deleting the ideas first. We have two options to
delete the objects.

Deletion without cascading

Reattach your developer, delete all the ideas first, and then delete the devel oper.

em = factory. creat eEntityManager ();

em get Tr ansacti on() . begi n();

paol o = em mner ge(paol 0) ;

for (ldea idea : paolo.getldeas()) {
em renove(i dea) ;

}

em r enove(paol 0);
em get Transaction().comrt();
em cl ose();

Have alook at the test class of the relation mapping examples for further examples.

Configure cascading

37

Working with Objects

Cascading is explained in detailed in chapter Cascading Section 7.3, “Cascading”. Here, | present only
ashort description. If you have set cascading to delete or all you can just delete the devel oper and
Hibernate will delete the ideas for you.

3.3.4. Additional commands

In this section, | will describe further commands provided by the EntityManager.
EntityM anager .lock

Use entityManager.lock can be used to place alock on an object in persistent state. This method
behaves differently as Hibernate' s session, which makes an object persistent as well.

EntityManager em = factory. creat eEntityManager();
em get Transacti on() . begi n();

pl ayer = em nerge(pl ayer);

em | ock(pl ayer, LockMdeType. PESSI M STI C READ) ;
em get Transaction().commt ();

em cl ose();

There are different options for the LockModeType:

LockModeType.NONE Thisis the default behaviour. If entites are cached, the cache is used.

If aversion column is present, the version isincremented and verified during the update SQL
statement. Y ou will find more details about @Version in chapter Optimistic Locking Section 13.8.1,
“Optimistic Locking”. LockModeType.OPTIMISTIC The object is read from the database

and not from the cache. If it was already read from the database, it will not be read again.

If aversion column is defined and the object was changed, then the version is incremented

and verified during the update. Thisis the same as the JPA 1 option: LockModeType.READ
LockModeType.OPTIMISTIC_FORCE_INCREMENT Same as OPTIMISTIC but will

increment the version even if the object was unchanged. Thisis the same as the JPA 1 option:
LockModeType.WRITE LockModeType.PESSIMISTIC_READ Reads the object from the database for
shared usage. For a PostgreSQL database the SQL looks like select id from Player whereid =7 for
share. LockModeType.PESIMISTIC_WRITE Tries to create an update lock and throws an exception
if thisis not immediately possible. Thisis not supported by all databases. The object is read from the
database for shared usage. For a PostgreSQL database the SQL looks like select id from Player where
id =72 for update. If aversion column exists and the object was changed, the version is incremented
and verified during the update.

| could not find alock with no wait option as supported by the Hibernate Session API. The query hint
to timeout the lock seems to be database dependent. It does not work with PostgreSQL, though it is
supported by the database.

Map<St ri ng, Obj ect > map = new HashMap<Stri ng, bject>();
map. put ("] avax. persi stence. | ock. ti meout", 2);

em find(Pl ayer.class, 1, LockMdeType. PESSI M STI C WRI TE, map) ;

@ There are bugs related to locking which were fixed with version 3.6 Final See https://
hibernate.onjira.com/browse/HHH-5032

Reloading an entity

38

https://hibernate.onjira.com/browse/HHH-5032
https://hibernate.onjira.com/browse/HHH-5032

Working with Objects

If acolumn of atableis calculated by a database trigger, it might be required to rel oad the object. A
call to refresh will reread the object from the database.

em refresh(devel oper);

An object in persistent state is stored in the persistence context and cannot be garbage collected even
if itisno longer referenced from your code. Sometimes you want to limit the size of the session for
example to keep memory consumption low. The command evict removes one object from the session.
If the object was changed, the update statement is most likely not yet send to the database. If you do
not want to loose your changes, then you should call flush to send all open changes to your database.

em flush();
em det ach(devel oper) ;

We have to consider Hibernate behaviour when using detach. Hibernate does not write al changes to
an object immediately to the database but tries to optimise the insert/update statements. All collected
changes are written to the database, before you execute a query or if you commit a transaction.

The manual call to flush is only required in special use cases. By default the persistence context is for
example flushed when you call commit and before the commit is actually sent to the database.

39

Chapter 4. A more complex example —web
application

| would like to demonstrate areal world web application using Hibernate. Step by step, you can create
an application which alowsto edit books.

We will implement

» asortable grid displaying books
* acreate page

 an edit page

This should take you about 15 minutes, if everything runs fine and assuming that you have Maven
installed and that you have some experience to deploy aweb application to a servlet engine.

What isMaven?
Maven is a dependency management solution and project build tool.

* It allowsto define libraries which are required by your application.

It downloads the libraries and libraries required by those libraries from Maven
repositiories on the Internet.

It can setup an Eclipse, Netbeans or IntelliJ project.

It can package your own projects for production deployment as well.

The central Maven repositiories provide nearly all Java Open Source libraries.

| would not replace my IDE build during development but it is a great help to manage
dependencies and build a project for production deployment.

Setup the project (5 minute)

Y ou need an Internet connection and you need to have Maven installed. http://maven.apache.org/ |
have used Maven version 3.

In ashell input the following command. This needs to be on one line.

nvn - Darchet ypeVersi on=5.2.5 -Darchetype.interactive=fal se -DarchetypeArtifact|d=quickst:
- Dver si on=1. 0- SNAPSHOT - Dar chet ypeG oupl d=or g. apache. t apestry -Dgroupl d=de. | al il una \
- Dpackage=de. |l al il una. hel | owor|l d -Dartifactl|d=hell oworld --batch-node \
- Dar chet ypeReposi tory=http://tapestry. apache. org archetype: generate

It will setup a new quickstart project. If you prefer to setup the project manually, have alook in the
Tapestry articles on my website http://www.lailuna.de

To have afirst ook at your application, tell Maven to download the dependencies. Type the following
command in ashell.

40

http://maven.apache.org/
http://www.laliluna.de

A more complex example
—web application

cd hel l oworl d
mvn dependency: resol ve

Start an internal web server
m/n jetty:run

Visit http://localhost:8080/helloworld in your browser.

de.laliluna:helloworld index about contact

helloworld index

Welcome to Tapestry 5! We hope that this project
template will get you going in style. current time

Just to prove this is live:

The current time is: Mon Jun 27 22:57:36
CEST 2011.

[refresh

©2009 de.laliluna. All Rights Reserved. * Design by Free CSS Templates * Icons by FAMFAMFAM.

We are going to use the Tapestry Hibernate Module. In addition we need to add the JDBC driver for
the database.

Edit the Maven build file myPathToThePr oject/hellowor [d/pom.xml

In the section <dependencies> add the following dependency:

Maven pom.xml.

<dependenci es>

<dependency>
<gr oupl d>or g. apache. t apest ry</ gr oupl d>
<artifactld>tapestry-hi bernate</artifactld>

<versi on>${t apestry-rel ease-versi on} </ versi on>
</ dependency>

<dependency>
<gr oupl d>post gr esql </ gr oupl d>
<artifactld>postgresqgl </artifactld>
<ver si on>8. 3- 603. j dbc3</ ver si on>

</ dependency>

41

http://localhost:8080/helloworld

A more complex example
—web application

<I-- nore dependencies -->

Other JDBC driver

= If you use another database, you need to replace the postgresgl dependency. Y ou can find

dependenciesin Maven repository using search engines. For google use the search term:
siteiibiblio.org mysql.

Change into the directory helloworld and let Maven resolve the libraries.

cd helloworld
nmvn dependency: resol ve

Import and run the project
IntelliJ and Netbeans support Maven out of the box. Eclipse requires the M2Eclipse plugin.

Alternatively using Eclipse you may type the following to create normal eclipse project files.

mvn ecli pse: ecli pse
Inside of your IDE deploy the project to awebserver like Tomcat or Jetty.
Add a Hibernate configuration (1 minute)

src/main/resour ces/hiber nate.cfg.xml.

<?xm version='1.0" encodi ng=" UTF-8"' ?>
<! DOCTYPE hi ber nat e-confi gurati on PUBLIC
"-//Hi bernat e/ H bernate Configuration DID 3.0//EN"
"http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd">
<hi ber nat e- confi gur ati on>

<sessi on-factory>
<property nane="hbnRddl . aut 0" >cr eat e- dr op</ pr opert y>

<property nane="connection.url">
j dbc: post gresql : // | ocal host : 5432/ pl ay
</ property>
<property nane="connecti on. user nane" >post gr es</ pr operty>
<property nane="connecti on. passwor d" >p</ pr operty>
<property nane="connection.driver_class">
org. postgresql . Dri ver
</ property>
<property nane="di al ect" >
or g. hi ber nat e. di al ect. Post gr eSQLDi al ect
</ property>
<property nane="cache. provi der_cl ass" >
or g. hi ber nat e. cache. NoCachePr ovi der
</ property>

<mappi ng cl ass="de. | alil una. hel | owor | d. donai n. Book"/ >
</ sessi on-factory>

</ hi ber nat e- confi gurati on>

Create the book entity (1 minute)

42

A more complex example
—web application

src/main/java/de/laliluna/hellowor ld/Book .java.

@ntity
public class Book {

@=ner at edVal ue

@d

private Integer id;
private String title;

@enpor al (Tenpor al Type. DATE)
private Date published;

@verride
public String toString() {
final StringBuilder sb = new StringBuilder();
sb. append(" Book") ;
sb. append("{i d="). append(i d);
sb. append(", title="").append(title).append('\"'");
sb. append(", published=").append(published);
sb. append('}');
return sb.toString();

public Integer getld() {
return id;
}

public void setld(Integer id) {
this.id = id;
}

public String getTitle() {
return title;
}

public void setTitle(String title) {
this.title = title;
}

public Date getPublished() {
return publi shed;
}

public void setPublished(Date published) {
t hi s. publi shed = publi shed;

}
}

Create a sortabledata grid (3 minutes)
In the Index.tml page, we are going to add the grid.

I ndex.tml.

<htm t:type="layout" title="newapp | ndex"
t:sidebarTitle="Current Tine"
xm ns:t="http://tapestry. apache. org/ schena/tapestry 5 1 0.xsd"

43

A more complex example
—web application

xm ns: p="t apestry: paraneter">

<t:grid source="al | Books" />
snip ...

Tapestry has a concept of atemplate and a corresponding Java class. The template can access
properties of the Java class. Asthe grid uses allBooks, we need to add a getAllBooks method to the
Index.java class.

Index.java.

i mport org. apache. tapestry5.ioc.annotations. | nject;
i mport org. hi bernate. Sessi on

i mport java.util.*;

/**

* Start page of application newapp
*/

public class | ndex

{

@ nj ect
private Session session

publ i c Li st <Book> get Al | Books() {
return session. createQery("select b from Book b").list();

}

snip ...

Redeploy your application and have alook at your sortable data grid.

Asit is annoying, to have an empty grid, we will add an action link to create random books. An action

link calls an action method on the Java class.

I ndex.tml.

<htm t:type="layout" title="helloworld |Index"
t:sidebarTitle="Current Tine"
xm ns:t="http://tapestry. apache. org/ schena/tapestry 5 1 0. xsd"
xm ns: p="t apestry: paraneter">

<di v>
<t:actionlink t:id="creat eRandonBook">Create a random book</t:actionlink>
</di v>
<t:grid source="al | Books" />
snip ...

The corresponding action method in the Index.java file creates a book. Please take care that the

method name corresponds to the t:id of the action link. Tapestry uses alot of conventions like that. As

the method returns null, you will stay on the same page.
Index.java.

public class |ndex{

@ nj ect
private Session session;

A more complex example
—web application

@onmi t Aft er
public Object onActionFronCreat eRandonBook() {
sessi on. save(new Book("Hi bernate " + new Randon{().nextl|nt(100),
new Date()));
return null
}

. snip ...

Y ou should be able to create books, see them in the table and sort them by now.

de.laliluna:helloworld

helloworld index

Welcome to Tapestry 5! We hope that this project template will get you going

in style.

Create a random book
Create a new book

- - -
- -

Foo Jun 15, 2011
2 Hibernate 64 Jun 28, 2011

Dialog to create a book (4 minutes)
Of course, you need to create real books as well and input the data.
Create a new template for the dialog.

/src/main/resour ces/de/laliluna/hellowor Id/pages/Cr eateBook.tml.

<htm t:type="layout" title="Create a book"
t:sidebarTitle="Current Timnme"
xm ns:t="http://tapestry. apache. org/ schena/tapestry 5 1 0. xsd"
xm ns: p="tapestry: paranet er" >

<t : beanedi t f orm excl ude="i d" obj ect ="book"/>
</htm >

The t:beaneditformis a powerful Tapestry component which creates adialog directly from your
model. The model must be provided in the corresponding Java class. In addition, the CreateBook.java
class has a onQuccess method being called, when the form is submitted.

45

A more complex example
—web application

/src/main/java/de/laliluna/hellowor Id/pages/CreateBook .java.
public class CreateBook {

/*

@roperty nakes the book avail able to the EditBook.tnl page.
*/

@°roperty

privat e Book book;

@ nj ect
private Session session;

/*

Inject a page. It is used |later for navigation purpose.
*/

@ nj ect Page

private |ndex index;

/**
* Commit the transaction using {@ode session.getTransaction().commit()}
* right after thenmethod was execut ed.
*/
@onmmi t Aft er
bj ect onSuccess() {
sessi on. saveOr Updat e(book) ;
/*
Return the injected page to navigate to the page.
*/
return index;

}

Finally, add alink to your index.tml to be able to navigate to the new page.

<di v>
<t : pagel i nk page="Creat eBook">Create a new book</t: pagel i nk>
</ di v>

de.laliluna:helloworld

create a book

Title:

Published: 6/15/2011 7

Create/Update

46

A more complex example
—web application

The t: beaneditform component is powerful because it is flexible. Y ou can override each input
elements and adapt it to your needs. Let’s add a character LOB to the book and a <textarea> input to
the dialog.

Book.java.

@ntity
public class Book {

@.ob
private String description;

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description

}

snip ...
We need to change the CreateBook.tml to override the description to make use of an textarea.

CreateBook.tml.

<htm t:type="layout" title="Create a book"
t:sidebarTitle="Current Tine"
xmns:t="http://tapestry. apache. org/ schema/tapestry_5_1 0. xsd"
xm ns: p="tapestry: paraneter" >

<t : beanedi t f orm excl ude="i d" obj ect ="book" >
<t:paraneter nane="description">
<t:label for="description">M description</t:|abel>
<t:textarea t:id="description" val ue="book. description"/>
</t:paraneter>
</t:beaneditfornr
</htm >

Just check that everything is working.

Order of properties
i3

The order of getter and setter in the Book classis relevant for the order of the form
properties. Y ou might consider to add the getter and setter of the description field at the
end. Alternatively, there is an @Reorder annotation, which alowsto define the order in
the grid and in the t: beaneditform.

Editing a book (3 minutes)

In order to open an edit book dialog, we will modify the table displaying all books. Clicking on the
book title in the grid, should allow you to edit a book. We need to modify how thetitle is rendered
in the grid, add a new template for the edit dialog and a corresponding Java class with the Hibernate
code to update the book.

Thelink first:

Modify the t:grid component. We override the cell for the title.

47

A more complex example
—web application

Index.tml.

<t:grid source="all Books" row="book">
<p:titleCell>
<t : pagel i nk page="Edi t Book" cont ext="book.id">${book.title}</t:pagelink>
</p:titleCell>

</[t:grid>

The grid makes use of a book property to store the current book while iterating. Therefor the
corresponding Java class Index.java needs to provide such a property. Add the following code.

Index.java.

@r operty
private Book book;

Create a new template.

/src/main/resour ces/de/laliluna/hellowor Id/pages/EditBook.tml.

<htm t:type="layout" title="Edit a book"
t:sidebarTitle="Current Tine"
xm ns:t="http://tapestry. apache. org/ schena/tapestry 5 1 0. xsd"
xm ns: p="tapestry: paranet er" >

<t : beanedi t f orm excl ude="i d" obj ect ="book" >
<t:paraneter nane="description">
<t:label for="description">Description</t:|abel>
<t:textarea t:id="description" val ue="book. description"/>
</t: paraneter>
</t:beaneditfornr

</htm >
Create the corresponding Java class.

/src/main/java/de/laliluna/hellowor ld/pages/EditBook.java.
public class EditBook {

/*

@roperty nakes the book avail able to the EditBook.tnl page.
*/

@Property

privat e Book book;

@ nj ect
private Session session;

/*

Inject a page. It is used later for navigation purpose.
*/

@ nj ect Page

private |ndex index;

/**

* |s called before the page is rendered. A value encoder provided by the
* Tapestry Hi bernate nmodul e, knows how to convert the id at the end of the

48

A more complex example
—web application

* URL | ocal host: 8080/ edi t book/2 into an instance of {@ink Book}
* @ar am book the book to edit
*/
voi d onActi vat e(Book book) {
t hi s. book = book;

}

/**

* On redirecting to the same page for exanple, if validation fails, it

* is required to make Tapestry aware of the page context object.
*

* O herwise you will |oose the information which book was edited.
* @eturn the edited book
*/

Book onPassi vat e() {
return book;

}

/**

* Commit the transaction using {@ode session.getTransaction().commt()}
* right after the method was executed.
*/
@Comm t Aft er
nj ect onSuccess() {

sessi on. saveOr Updat e(book) ;

/*

Return the injected page to navigate to the page.

*/

return index;

}
Y ou have completed afirst web application using Hibernate.

4.1. Summary

How does it work behind the scenes?

Tapestry provides it own Dependency Injection Framework. It is used internally to deal with the
configuration, page and component handling. Y ou can use it for your own code as well or make use of
the integration with Spring, Google Guice, or EJB3.

Dependency injection inject all what you need into a page. The @Inject annotation in the following
code let Tapestry inject a Hibernate Session.

public class EditBook {

@ nj ect
private Session session;

Where does the session come from?

The Tapestry Hibernate module makes use of distributed configuration supported by Tapestry.
When Tapestry starts the module, it builds a Hibernate SessionFactory and registers afactory for
the Hibernate session. Whenever you inject a Hibernate session it is created by the factory using the
normal sessionFactory.openSession() you have aready used in the first example.

49

A more complex example
—web application

The module registers a method interceptor as well. It is called whenever the Tapestry Dependency
Injection framework finds a @CommitAfter annotation. It is pretty common to let the transaction

be handled by dependency injection frameworks. Y ou might have come across the term Aspect
Oriented Programming (AOP). Transaction handling is an aspect, which can be provided by method
interceptors and there is no need to bloat your code with it.

In fact many technologies (EJB, Spring, Google Guice, Pico-Container) makes use of this approach.

Component based frameworks are great as you can use and devel op powerful reusable
components. | can only recommend to try out Tapestry. It is one of the best frameworks, |
am aware of. Have you seen the live class reloading of Tapestry? Y ou only need to save a
file and reload the page in your browser to see your pages.

| hope you got a good impression, how Hibernate can be integrated into a web framework.

By the way, you will find a powerful Hibernate integration in the Wicket Framework as
well.

50

Part Il. Mapping, Queries

Chapter 5. Basic Mappings

This chapter contains alarge selection of examples. The complete examples including mapping,
classes and atest class showing how to insert, update, delete and query the mapped objects can be
found in the example Java project mapping-examples-xml for XML mappings and mapping-examples-
annotation for annotation mapping.

5.1. Annotation versus XML

There are two approaches to mapping: XML and Annotation. The latter is standardised as Java
Persistence and Hibernate supports it since version 3.x. Annotation mapping requires Java 1.5 alias 5
and is the preferred mapping approach by many people.

Annotation mappings are defined directly in the class.

This book contains many but not all existing mappings. | recommend two sources to |ook

E up further mappings. The hibernate reference and the JUnit test cases of Hibernate. The
source code provided with the Hibernate download has a test folder containing many
complicated and inspiring variations.

Class mapped with annotations.

i mport java.io. Serializable;
i mport javax. persistence. Entity;
i mport javax. persi stence. Gener at edVal ue;
i mport javax. persi stence. Generati onType;
i mport javax. persi stence. |d;
i mport javax. persi stence. SequenceCener at or
i mport javax. persi stence. Tabl e;
@ntity
@rabl e(name="conput er")
@equenceCener at or (name="conput er _seq", sequenceNane="conputer id _seq")
public class Conputer inplenents Serializabl ef
private static final |ong serial VersionU D = 3322530785985822682L
@d
@cener at edVal ue(strat egy=CGener ati onType. SEQUENCE, gener at or =" conput er _seq")
private |Integer id;
private String nane;
public Conputer() {
}
public Integer getld() {
return id;
}
public void setld(lnteger id) {
this.id =id;
}
public String get Nane() ({
return nane;
}
public void set Name(String name) {
t hi s. name = nane;

}
public String toString() {

52

Basic Mappings

return "Conputer: " + getld() + " Nane: " + getNane();

}
}

Annotations start always with an @ character. @Entity defines that this classis a mapped class.
@Table specifies that the entity is mapped to the table computer @SequenceGenerator specifies the
Hibernate name and the database name of a sequence, which can be used to generate unique values.
@Id defines the primary key of the class and @GeneratedV alue specifies that theid is generated by
the sequence, we defined at the beginning of the class.

Careful chosen default behaviour. Annotation mapping has careful chosen default behaviour.
Hopefully in most cases you do not have to write anything to get the wanted behaviour.

Advantages of annotation mapping over XML mapping files
» Mapping isincluded directly in the class, what | consider clearer

» Lessdefinitionsto type, because of well chosen default values (- | did not need to put any
annotations in front of the name attribute in the former example.

* Faster to develop

» Careful chosen default values

Disadvantages
» Missing features, e.g. natural-id, some rare mapping types
» Javal5required

* |f you serialize the class and send it to another system (e.g. JEE) those system needs to have the Jar-
files containing the annotation as well. This could be an annoyance, in case you connect to various
backend systems with different Hibernate versions.

Opinion: | think that annotation mapping is clearer, faster and represents the future approach to
mapping. Y ou might consider to use it aswell. In the next chapters, | will explain both approaches to
you.

5.2. Annotation mapping

What ar e annotations?

An annotation is atag which can be added to the source code. Annotations are used to add specia
behaviour, suppress warnings or to define Hibernate mappings. It starts with an @ and can have
parameters. The following source code is having an annotation indicating a one-to-many relation:

@neToMany(cascade = CascadeType. ALL)

@oi nCol um(nane = "devel oper id")

publ i c Set <Hobby> get Hobbi es() {
return hobbi es;

53

Basic Mappings

}

A annotation resembles an interface declaration. Here is the source code of the @SequenceGener ator
annotation.

/
The contents of this file are subject to the terns
of the Commmon Devel opnent and Distribution License
(the License). You may not use this file except in
conpliance with the License.

You can obtain a copy of the license at

https://gl assfish. dev.java. net/public/CDDLv1. 0. htm or
gl assfi sh/ bootstrap/| egal /CDDLv1. 0.t xt.

See the License for the specific | anguage governi ng
perm ssions and |initations under the License.

When di stributing Covered Code, include this CDDL
Header Notice in each file and include the License file
at gl assfish/bootstrap/| egal / CDDLv1. 0. t xt .

I f applicable, add the follow ng bel ow the CDDL Header,
with the fields enclosed by brackets [] replaced by
you own identifying information:

"Portions Copyrighted [year] [nanme of copyright owner]"

Copyri ght 2006 Sun M crosystens, Inc. Al rights reserved.

¥ 0% 3k X %k X X kX %k X X X X 3k X X X X X X F

~

package j avax. persi stence;
i mport java.l ang. annot ati on. Tar get ;
i mport java.l ang. annot ati on. Retenti on;
i mport static java.lang. annot ati on. El enent Type. METHOD;
i mport static java.lang. annot ati on. El enent Type. Fl ELD;
i mport static java.lang. annot ati on. El enent Type. TYPE;
i mport static java.lang.annotati on. Retenti onPol i cy. RUNTI MVE;
@rar get ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI MVE)
public @nterface SequenceGenerator {
String nane();
String sequenceNane() default "";
int initialValue() default 1;
int allocationSize() default 50;

}
Field, Method, Class annotations

Annotations can be assigned to a class, method or afield.

@ntity
public class BoxTurtle inplenents Serializable {
@nbeddedl d

Thisis not an option but defined in the annotation. In the source code of an annotation you can see
where you can add the annotation. The following code shows an annotation which can be added to a
field or amethod.

@rar get ({ METHOD, FI ELD})

Pitfall: You must choose if you add your annotations to the field or the methods. If you add an @Id
annotation to your id field, Hibernate ignores any annotations to methods and vice versa.

54

Basic Mappings

Requirementsto use annotations

In order to use annotation mapping you need the following things:

» J2SDK 1.5/ 5 or greater for support of annotation

* Librariesfrom http://annotations.hibernate.org (g b3-persistence.jar and hibernate-annotation.jar)
Further infor mation

In addition to the samples we provide in this chapter, you can find a complete reference of annotations
in this book. Have alook in chapter Annotation reference Section A.1, “Annotation Reference”.

5.2.1. Mapping fields

The following is the shortest possible mapping. It marks the class as Hibernate entity and the id field
with @Id. The entity will be stored in atable player having two columns: id and name. Annotation
mapping treats all fields as mapped by default. Inherited fields are not mapped by default.

i mport j avax. persistence. Entity;
i mport javax. persi stence. | d;

@ntity

public class Player {

@d

private |Integer id;

private String nane;

public Player() {
}

public Player(String nane) {

t hi s. name = nane;
}

public Integer getld() {
return id;

}

public String getNanme() {
return name;
}

}
If you do not want to map afield, you need to mark it with @Transient.

@ntity
public class Player {

@r ansi ent
private int val ue;

55

http://annotations.hibernate.org

Basic Mappings

If you want to map fields of parent classes you need to mark the parent class with
@MappedSuperclass.

@vbappedSuper cl ass

public class AbstractPl ayer {
@d
@ener at edVal ue
protected I nteger id;
protected String nane;

}

If you want to be more explicit, you can use the @Basic and the @Column annotation. @Basic allows
to define that asingle field is not loaded immediately but lazy when the getter iscalled for thisfield.
Thisisused extremely rare for single fields and in order to get this to work, you need to use byte code
instrumentation. In addition @Basic allowsto define that afield is not nullable what is possible with
@Column as well.

@col um(nane = "player _nanme", unique = true, nullable = fal se,
updat abl e false, length = 5)
private String namne;

The sample maps the field name to the database column player _name. unique, nullable and length
are hints for the schema generation. If you let Hibernate generate your tables, unique or not null
constraints will be created. L ength corresponds to the length of the varchar column.

Furthermore Hibernate will check nullable=false constraints itself, without sending a query to the
database.

updatable allows to disable update statementsto afield. You should useit for immutable fields. An
immutable field can be saved once but an update is not possible. The field will not be included in the
fields of an update statement. There is an insertable option available as well, which can turn afield
into aread only value.

java.util.Date

A java.util.Date could be a date, atime or adate and time value. Y ou can specify the type for afield
using @Temporal

@enpor al (Tenpor al Type. DATE) /1 TI MESTAMP, TINME or DATE
private Date birthDay;

Enum types

Annotation mapping supports enum types without using a user defined type.

public class Player {
public enum Experience {BASIC, MEDI UM PROFESSI ONAL}

@nuner at ed
private Experience experience;

The value are stored with the enum type’ s ordinal value, which is O for the first enum value (BASIC),
1 for the second and so on.

56

Basic Mappings

If you prefer atext representation (for example BASIC for Experience.BASIC), you can use
@Enumerated(EnumType.STRING). | tend to use a text representations for all tables which are not
very big, asthere are more readable.

Components

A component is a class containing multiple fields. It is a good object oriented development practise
to compose a class of other classesinstead of having asingle classwith alot of fields. Imagine the
frequent use case of addresses. We want to store street and city of the player. Instead of adding
individual fields, a new class Addressiis created containing the address fields. Y ou need to mark it as
@Embeddable. We will see componentsin greater detail later.

@nbeddabl e

public class Address {
private String street;
private String city;

public String getStreet() {
return street;

}

public void setStreet(String street) {
this.street = street;

}

public String getGty() {
return city;

}

public void setCity(String city) {
this.city = city;
}
}

Inside of the player class you just need to add the field and add the @Embedded annotation. The fields
of the address are by default stored in the same table as the player.

public class Player {
@nbedded
private Address address;
.. ..

5.2.2. Where to put annotations

Y ou can add annotations to your fields and to your getter methods. First, of al you need to choose
one approach. Inside of a class Hibernate looks for the @Id annotation. If it isfound in front of a
field, Hibernate will only consider annotations in front of fields. It the @Id isfound in front of a getter
method it will only look for annotations in front of getters.

Player with getter annotations.

@ntity

public class Player {
@d
@cener at edVal ue

57

Basic Mappings

public Integer getld() {
return id;

}

@ol um(name = "player_nane")
public String getName() {
return name;

}

The placement of the annotation influences the default behaviour how Hibernate is writing values
from a database row to a class. Annotation in front of getters let Hibernate use the setter and getter
methods, whereas annotations in front of fields let Hibernate use direct field access.

Use the @AccessType annotation to override the default behaviour.
/1 the name is accessed using the getter and setter nethod

@\ ccess(AccessType. PROPERTY)
protected String namne;

5.3. XML Mapping

Overview

Each mapping document starts with the tag

<hi ber nat e- mapping ... >

Thistag can include multiple mappings. Though | think that it is cleaner to have a separate XML per
entity.

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE hi ber nat e- mappi ng PUBLI C "-// Hi bernat e/ H ber nate Mappi ng DID 3. 0/ / EN'
"http://hibernate. sourcef orge. net/ hi ber nat e- mappi ng-3. 0. dtd" >
<hi ber nat e- mappi ng package="de. | al i | una. cachet est" >
<cl ass nane="Conputer" tabl e="tconputer">
........ snip
</ cl ass>
<cl ass nane="Devel oper" tabl e="t devel oper">
........ snip
</ cl ass>
</ hi ber nat e- mappi ng>

5.3.1. Field mapping

Each field, which should be stored, need to be added to the XML. Y ou need to specify the field name
and the type if it cannot be determined by Hibernate.

<cl ass nane="Pl ayer" >
<id nane="id">
<generator class="native"/>
</id>
<property nane="birthDay" type="date"/>

58

Basic Mappings

<pr operty nane="name" />

</ cl ass>

Thefield birthDay is of typejava.util.Date. Hibernate cannot determine if you want to store a date,
time or timestamp value. Therefor you need to specify the type. For a date field the following types
are available: date, time, timestamp.

Java s date time is mutable which renders it useless for many use cases. In addition it provides you
with features like January is 0. For many years know there are plans to replace date in Java but since
Java 7 does not appear, the date will not appear as well. Y ou might consider to use a better date
implementation like Joda Time.

If you treat your date asimmutable, you can take advantage of Hibernate optimisations. Change your
type to imm_date, imm_time or imm_timestamp and Hibernate will treat it asimmutable as well. Y ou
need to take car that in your code, you will never change individual fields of a date but create a new
instance and assign it to your entity.

/1 Good i mmut abl e usage

Cal endar ¢ = new G egori anCal endar () ;
c.set Ti ne(j ohn. getBirt hDay());

c. add(Cal endar. HOUR_OF DAY, 1);
john.setBirthDay(c.get Time());

/1 Bad usage
john. getBirthDay() . set Hours(22);

There are additional attributes which allow to specify field length, not null or unique constraints. The
access type can be specified as well. By default XML based mappings use the getter and setter to
write fields, but you can change the approach per field.

<property name="nane" | ength="20" col um="pl ayer _nanme" not-nul | ="true" uni que="true"

Enum types cannot be persisted out of the box. Y ou need to implement a UserType. Have alook in
the Hibernate Reference for a description on writing user types.

The following table shows attributes you can set. The default behaviour is displayed as bold text. Very
useful or important settings are marked with color. Y ou only have to define properties which change
the default behaviour. Most of the following is rarely needed.

<hiber nate-mapping>

schema=" schemaName"
The default database schema used for all mappings. Y ou can overwrite the value per class.
PostgreSql supports schemas.

catalog="catalogName"
The default database catalog used for al mappings. Y ou can overwrite the value per class.
Informix and MSSQL supports catalogs

default-cascade=" none | all | save-update | delete | all-del ete-orphan | del ete-orphan”
Default cascading behaviour for relations. | prefer to leave this value and to define this explicitly
in the relations.

59

acc

Basic Mappings

default-access="field | property | myPropertyAccessorClass’
Default strategy used for accessing properties. Standard is property and you should keep this
normally. Thiswill use getters and setters to access fields. Field will access a property directly
by its name. So your variables must be public. Y ou can invent further methods with your own
implementation of the interface org.hibernate.property.Property A ccessor

default-lazy="truelfase"
Default behaviour for loading of relations. Y ou should leave this to true. More information on lazy
loading can be found in chapter Lazy Initialization Lazy initialization

auto-import="trueffalse"
Allows use of unqualified class names in the query language for classes in this mapping. In
most cases you appreciate this behaviour. Instead of from de.laliluna.example.Car ¢ where
c.color="blue' you can write from Car ¢ where c.color="blue

package=" package.name"
Defines a package prefix for all class names in this mapping. This saves alot of typing work when
your classes are all in the same package.

5.3.2. Class mapping

The following table gives an overview of all tags available. Most of them are rarely needed. | have
marked the most common tags with colour.

<class>

name=" ClassName"
Name of the class or entity, Optional if you don’t want to change the entity name,

table="tableName"
Optional, default value is the class name. Thisis the name of mapped database table.

discriminator-value=" discriminator_value"
Thisis used for inheritance mapping. Have alook at chapter Inheritance Mapping to read more
about this. The value is used to distinguish sub classes. Acceptable values include null.

mutable="truelfalse"
Allows to define readonly classes. It can be used in combination with readonly cache which gives
alightning fast mapping. For performance tuning you could think of individual mappings for read
only access.

schema="owner"
The database schema used for this class. This overwrites the default value. PostgreSql and other
databases support schemas.

catalog=" catalog"
The database catalog used for this class. This overwrites the default value. Informix, MSSQL and
other databases support catalogs

proxy="Proxyl nterface"
Thisisin my opinion only needed in special cases. Y ou can define an interface used for lazy
initialising proxies. Read more about thisin the Hibernate reference. Search for proxy.

60

Basic Mappings

dynamic-update="truelfalse"
Normally update queries are prepared during the initialisation of Hibernate. If set to true,
Hibernate will generate the SQL at runtime and include only changed properties. Thisis by far
slower but useful when you use blobs fields in your mapping or if you want to allow concurrent
updates to the same row. Concurrent updates = Two threads update the same row. This can work
when different fields are changed. It can be used in combination with a special optimistic locking
configuration.

dynamic-insert="truelfalse"
Same as for dynamic-update. Only difference isthat in the insert statements only not null fields
areincluded.

select-before-update="truejfalse"
Slows down performance and should not be used without a good reason. If true, Hibernate should
never perform an SQL update unlessit is certain that an object is actually modified. Thisis useful
in case when you reattach objects and you do not want an update statement to be called in order to
prevent that atrigger is called.

polymor phism="implicit|explicit"
Should only be changed with a good reason. Implicit means that a query of a super class of the
mapped class will return this class. Explicit is useful when you have the normal classand a
lightweight class not including all the fields. Then a query of the super class would not include the
lightweight classwhen it is set to explicit.

where="arbitrary sgl where condition"
Defines a condition always added when you retrieve objects of thisclass. It isuseful when you

want to hide data. For example the status O defines deleted data then you could use where="status
<>0"

persister="myPersister Class"
Should only be changed with a good reason. A persister is responsible for writing the data. Y ou
could create a custom persister to save datato LDAP, aflat file, ... In the Hibernate download you
can find an example in the test directory org.hiber nate.test.|egacy.CustomPer sister

batch-size=" 1"
Very interesting for tuning in specia situations. Can be any number but should be reasonable.
When you iterate through alist of 10 Book objects and call book.getAuthor than Hibernate will
generate ten queries to fetch the author. A batch size of 4 would lead to 3 queries fetching 4,4 and
2 authors. If you use older Oracle versions and the class contains Blob/Clob you may be forced to
use a batch-size of 1.

optimistic-lock="none | version | dirty | all"
Defines the optimistic locking strategy. The hibernate reference recommends strongly version. All
would check al columns, dirty would check only changed columns. Thiswould allow concurrent
updates when the fields are not the same. Read more about optimistic locking in chapter TODO:
Referenz nicht gefunden.

lazy="true|false"
Y ou can disable lazy fetching of relations. Use this with care. Read more about this in chapter
Hibernate Architecture

61

Basic Mappings

entity-name=" EntityName"
Entity name isthe name used in al queries. The default value is the class name. Y ou do not have
to set it. Y ou can map the same class to multiple tables using different entity names. A special
use case is the mapping to XML or Mapsinstead of classes. Read more about XML mapping and
dynamic mapping in the Hibernate reference in the chapter dynamic models and XML mapping.

check="arbitrary sql check condition"
Can be used to check that a column only contains special values. For example you have an address
table containing billing and delivery addresses. A type column contains either billing or delivery
An example can be found in chapter Typed relation

rowid="rowid"
A rowlID isthe physical position of data. Thisis used for example in Orcale and speeds up update
performance. Oracle only.

subselect="SQL expression”
Allows to generate views even if your database does not support it. Y ou can define a complex
select statement and map the resulting columns to the class. This can only be used with readonly
mappings ; mutable="false"

abstract="truelfalse"
Abstract means that in an inheritance mapping using union-subclass this class needs no
corresponding table. Only subclasses objects are generated. Y ou will understand this, when you
read more about inheritance mapping. Read more about this in chapter Inheritance Mapping

node=" element-name"
Only needed for XML mapping. Read more about this in the Hibernate Reference in chapter XML

Mapping.
Other mapping tags

This book does include areference of Hibernate annotations but not yet a complete reference of
XML mappings. We have examples for the most common mapping situations in the next chapters. If
you need a overview of al mapping tags, have alook in the Hibernate Reference provided with the
Hibernate download. The chapter Mapping declaration describes the XML mappings completely.

62

Chapter 6. Primary key mapping

A primary key in adatabase is a unique identifier, you can use as key to adatarow. A primary key
precisely identifiesarow of atable.

Table6.1. Example of a table having a unique Integer asprimary key

Primary key Name

1 Jenny

2 Stephan
3 Sebastian

A primary key can consist of multiple column as well. In this case the combination of the columns

must be unique.

Table 6.2. Example of a table having name and surname as primary key

Primary key - name Primary key —surname employedDate
Hennebrueder Sebastian March, 2nd 2005
Hennebrueder Michael April, 5th 2006
Jones Jm Mai, 8th 2007
Hibernateid

A primary key isused in Hibernate as well. It is called identifier (id) and identifies an object. Once a
id is specified you cannot update it in Hibernate. Hibernate supports smple and compositeids. Y ou
can assign an id or use a generator to create an id. For example, a sequence generator, generates a
unique Integer or Long value using a database sequence.

6.1. Natural versus Surrogate Ids

Natural Ids are ids, which usesreal datato define auniqueid. A id of ahouse can be city + street +
house number. A surrogate id has nothing to do with thereal data. It is artificial. It can be aunique
number or aunique string. Do only use anatura id, if you are absolutely sure, that the columns
included in thisid, will never change. If in the example above the name of the street changes, you
cannot update the name using Hibernate. Using SQL you will have to update the house table and all
tables having aforeign relation to this table. A suitable case for anatural id could be atable holding

| SO country codes:

Table 6.3. Example of atable having a natural primary key

Primary key —iso-code

German name

English name

en

Englisch

English

de

Deutsch

German

Keep in mind that even 1 SO codes do change over time.

63

Primary key mapping

See the discussion in the wikipedia as well: http://en.wikipedia.org/wiki/Surrogate _key

Source code. Source code for examples can be found in the projects mapping-examples-xml and
mapping-examples-annotation in the Java package de.laliluna.primarykey.

6.2. Assigned Id

Useful for natural ids or in case you have your own strategy to create a uniqueid:

i mport java.io. Serializabl e;

i mport javax. persistence. Entity;

i mport javax. persi stence. |d;

@ntity

public class Lion inplenents Serializable {
@d

private |Integer id;

Same as XML mapping:

<cl ass name="Lion" table="lion">
<id name="id">
<gener at or cl ass="assi gned"></ gener at or >
</id>

6.3. Generated with Auto Strategy

The AUTO strategy will select a generator depending on your database. Thisisagood choice, if you
need to support multiple databases.

If your database supports sequences, they will be used. By default Hibernate uses a sequence named
hibernate id_seq. Make sure that it existsif you create your database manually.

Y ou must add the @GeneratedVal ue annotation to your primary key.

@ntity

public class Cheetah inplenents Serializable {
@d
@zener at edVal ue(strat egy=Cener ati onType. AUTO)
private |Integer id;

Same as XML mapping:

<cl ass nane="Cheet ah" tabl e="cheet ah">
<id nane="id" type="integer">
<col um nane="id" />
<generator class="native">
</ gener at or >

6.4. Other Annotation Strategies

GenerationType.SEQUENCE

64

http://en.wikipedia.org/wiki/Surrogate_key

Primary key mapping

The sequence strategy uses a database sequence to generate the id values. The following sample uses
a database sequence named puma_id_seq to generate the id values. For every insert the sequenceis
called and the value is set asid value.

Code sample.
@d
@cener at edVal ue(strategy = CGenerationType. SEQUENCE, generator = "ny_gen")
@equenceCener at or (nane = "my_gen", sequenceNanme = "puna_id _seq",

al |l ocationSize = 1)
private |Integer id;

If we change the allocation size to 50, Hibernate will apply a so-called high-low-agorithm to create
theid values. A database sequence of 10 will let Hibernate generate ids from 10x50=500 to 549, a
sequence value of 11 from 11x50=550 to 549. Thisis very useful, because Hibernate only needs to
select the next sequence value for every 50teenth insert statement.

Code sample.
@d
@abl eGener at or (nane = "puna_gen", table = "primary_keys")
@xner at edVal ue(strategy = Cenerati onType. TABLE, generator = "puma_gen")

private Integer id;

Table6.4. 1d Generator Strategies

Strategy Description

GenerationType. SEQUENCE Uses a sequence, default name is hibernate _seq,
(Oracle PostgreSgl and other)

GenerationType. TABLE Uses atable to store the latest primary key value
(al databases)

GenerationType.| DENTITY Specia column type (MS SQL and other)

All these generators are supported by JPA aswell. Hibernate adds an extension called
GenericGenerator. It allowsto use al kind of XML ID generators with annotation as well. Further
information to these can be found in our Annotation reference in chapter Annotation Reference
Section A.1, “Annotation Reference”.

6.5. Composite Id

A composite Id consists of multiple database columns mapped to aid class. There are two optionsto
map a composite Id:

* @ldClass
* @Embeddedid

Important: Y ou must overwrite equals and hashCode for composite id classes. If not Hibernate will
think that the following id classes are different.

65

Primary key mapping

BoxTurtleld bl
BoxTurtleld b2
bl. equal s(b2);

new BoxTurtleld("Bad Vil bel", "Roman sal ad");
new BoxTurtleld("Bad Vil bel", "Roman sal ad");

Eclipse and probably most I DEs provides a generator function for this. In Eclipseitisright click on
the source _ source _, Generate hashCode, equals. Y ou will find a detailed explanation about equals
and hashCode in the next chapter.

Let’shave alook at an example: The famous box turtle for example can be clearly identified by its
locations and the favourite salad. We will map it with an @Embeddedid.

< <Entity Bean ==
==0RM Persistable >=

BoxTurtle
-name ; String
-id : BoxTurtleld

1 id
boxturt
BoxTurtield - S 2
e o5 location varchar{255)
-location © airing : i7 favoritesalad varchar(255)
-favouriteSalad : String name varchar{255)

BoxTurtle class.

i mport java.io.Serializable;

i mport j avax. persi stence. Enbeddedl d;
i mport j avax.persistence. Entity;
@ntity

public class BoxTurtle inplenents Serializable {

@nbeddedl! d
private BoxTurtleld id;

Id class.

i nport java.io.Serializable;

public class BoxTurtleld inplenments Serializable {
private String | ocation
private String favoriteSal ad;

The primary key fields areincluded in the Id class. The BoxTurtle class only references the Id class.
Same as XML mapping:

BoxTurtlehbm.xml.

<cl ass name="BoxTurtle" tabl e="boxturtle">
<conposite-id class="BoxTurtleld" name="id">
<key- property nanme="favouriteSal ad"></key- property>
<key- property name="| ocati on"></key- property>
</ conposi te-id>
......... sSnip

66

Primary key mapping

Usage examples.

[* savel/create a box turtle */
BoxTurtleld boxTurtleld = new BoxTurtleld("Bad Vil bel", "Roman sal ad");
BoxTurtl e boxTurtle = new BoxTurtle();
boxTurtl e. setld(boxTurtl eld);
sessi on. save(boxTurtl e);

/[* get a box turtle fromdb */
BoxTurtleld boxTurtleld = new BoxTurtleld("Bad Vil bel", "Roman sal ad");
BoxTurtl e boxTurtl eRel oaded = (BoxTurtle) session. get (
BoxTurtl e. cl ass, boxTurtleld);
/[* find a box turtle */
Li st <BoxTurtle> turtles = session.createQuery(
"fromBoxTurtle b where b.id.favouriteSal ad = :sal ad")
.setString("sal ad", "Roman salad").list();

The SpottetTurtle istotally different from its outlook but can identified by its location and its
favourite salad as well. We will map it as @IdClass. The main differenceisthat the fieldslocation
and favoriteSalad are included in the Turtle class and the Id class. | recommend the first approach, as
it provides less redundancy and is clearer in the class model.

Classes Tables
<<Entity Bean =>=> =
<<ORM Persistable == spottedturtle —1
SpottedTurtle 2 location varchar{255)
-location : String 72 favoritesalad wvarchar(255)
favouriteSalad : String
- name varchar{255)
-name : string

1
|
|
A4
SpottedTurtleld

-location : String
favouriteSalad : String

SpottedTurtle class.

i mport java.io.Serializabl e;

i mport javax. persistence. Entity;

i mport javax. persi stence. |d;

i mport javax. persistence. | dd ass;

@ntity

@ dd ass(SpottedTurtl el d. cl ass)

public class SpottedTurtle inplenments Serializable {

@d

private String |ocation;

@d

private String favoriteSal ad;

SpottedTurtleld.

67

Primary key mapping

i mport java.io.Serializable;
inmport de.laliluna.utils.C assUtils;

public class SpottedTurtleld inplenments Serializable {
private String |ocation;
private String favoriteSal ad;

The same as XML mapping:

<cl ass nane="SpottedTurtle" tabl e="spottedturtle">
<conposite-id class="SpottedTurtleld" napped="true">
<key- property nanme="favouriteSal ad"></ key- property>
<key-property nanme="I| ocati on"></key- property>
</ conposite-id>
........ snip..........

Usage examples.

[* create or save a turtle */

SpottedTurtl e spottedTurtle = new SpottedTurtle("Leipzig",
"Greek salad", "Daniel");

sessi on. save(spottedTurtle);

/* get a box turtle fromdb */

SpottedTurtleld spottedTurtleld = new SpottedTurtleld("Leipzig",
"Greek sal ad");

SpottedTurtl e spottedTurtl eRel oaded = (SpottedTurtle) session. get(
SpottedTurtle.class, spottedTurtleld);

/[* find a box turtle */

Li st<SpottedTurtle> turtles = session. creat eQuery(
"from SpottedTurtle b where b.favouriteSalad = :sal ad")
.setString("sal ad", "Roman salad").list();

6.6. Equals and Hashcode

Equals and hashCode are two methods which are very important for various data structure and for
Hibernate as well. You will find alot of nonsense about equals and hashCode, therefor | will take
greatest care to provide you with a good explanation.

In Java you can compare two objects using ==. The comparison returns true, if both objects have the
same memory address.

i f(foo == bar)
| 0og. debug("Foo has the sanme nenory address as bar");

The equals method

The equals method isimplemented by java.lang.Object and, if not overridden, will behave as==. The
intention of equalsisto compare objects from a business point of view. For example a class Country
has afield isocode like DE for Germany or FR for France etc. We could consider to compare two
countries using the isocode.

public class Country {
private String isocode;
private String description;
private int popul ation;

68

Primary key mapping

public String getlsocode() {
return i socode
}

@verride
publ i c bool ean equal s(Obj ect 0) {
i f(o instanceof Country){
Country other = (Country) o;
return i socode. equal s(ot her. getl socode());

}

return false;

}

Good candidates for equals are fields which could be used as natural primary key or aternatively are
having a unique key constraint in the database.

There are the following rules to respect when implementing the equals method:

Transitiv
if a.equals(b) and b.equals(c) then a.equals(c) as well.

Reflexiv
a.equals(a) should return true

Symmetric
if aequals(b) then b.equals(a) as well.

Consistent
If you call a.equals(b) multiple times then it should always return the same value

Comparing with null
if bisnull then a.equals(b) should return false.

The hashCode method

If you use your class with structures calling equals and hashCode - for example a HashSet or a
HashMap - then you should override both methods. Their behaviour depend on each other. The
hashCode computes a unique int value for your class. It does not need to be perfectly unique but
should be well distributed. Let’s have alook at an example.

A java.util.HashSet is a structure guarantying that only one instance of an object isincluded. It
consists of buckets (simplified!). The following code will add a new country instance to a HashSet.
Internally, the HashSet will compute the hash code and find a bucket using a modulo operator. The
country is added to the bucket under some conditions.

Set <Country> countries = new HashSet <Country>();
countries. add(new Country("DE", "Germany"));

If the HashSet has 16 buckets then the bucket is cal culated hashCode % 16. If there are already entries
in a bucket, then hashCode will compare all entries using the equals method. If no existing entry is
equal, then the item will be added to the bucket. Therefor, if we implement hashCode, we should
implement equals as well.

69

Primary key mapping

The relation between equals and hashCode is: If equals returns true, then hashCode must return the
same value. Otherwise a structure like java.util.HashSet won't find the same bucket and could not
guaranty that there are no two equal objectsin a Hash&et.

Thisrelation is not equivalent. If the hash code of two objects are the same, then the two objects don’t
have to be equal but they can be equal.

Country with equals and hashCode.

public class Country {
private String i socode;
private String description;
private int popul ation;

public String getlsocode() {
return i socode;
}

@verride
publ i c bool ean equal s(Cbj ect 0) {
i f(o instanceof Country)({
Country other = (Country) o;
return i socode. equal s(ot her. getlsocode());

}

return fal se;
}
@verride

public int hashCode() {
return i socode. hashCode();
}

Further more, the computed hash code should not change while a structure contains the object. Have a
look at the following code. Though we added the country object to the HashSet, we cannot find it any
more, as the hashCode changes if we set the isocode to a different value.

Set <Country> countries = new HashSet <Count ry>();

Country country = new Country("DE", "GCernmany");

countries. add(country);

country. setl socode("FR");

System out. println(countries.contains(country)); // prints nost |ikely false

’qj HashCoderules

The hashCode should be well distributed to let structures distribute the objects on buckets
well distributed.

Y ou can change an object such that the hashCode changes but not while the object isina
Set or Map structure and you or Hibernate is using the structure.

Always implement equalsif you implement hashCode.

Consider to let your IDE generate equals and hashCode for you. Eclipse, IntelliJand
Netbeans are capable to generate it. Y ou just need to know which fieldsto use _ unique
keys or business keys or natural primary key candidates.

70

Primary key mapping

Read the book Effective Java from Joshua Bloch for further details.
Hibernate and equals
To answer the most important question first: Do | have to implement equals and hashCode?
Answer: It depends.

A composite id must implement both methods or the id will not work properly. Hibernate must be
able to compareids. A compositeid will most likely use al itsid fields in the equals and hashCode
methods.

An entity does not need to implement equals and hashCode under some conditions. The persistence
context guaranties that an entity with agiven id exists only once. Y ou cannot let two objects with the
same id become persistent. Assuming that a class Country uses the isocode as 1D, the following code
will cause a non unique object exception.

Country first = new Country();
first.setlsocode("DE");

sessi on. save(first);

Country second = new Country();
second. set | socode("DE");

sessi on. save(second); // NonUni queCbj ect exception

Therefor, if you save or update or merge your objects before adding them to a Set or Map, then you do
not need to implement equals and hashCode.

But if you want to compare your objects or add them to a Set or Map, when the session is closed and
the object is detached, then you must implement equals and hashCode. If you do not compar e your
objects with each other or do not use a Set or Map, then you do not have to implement equals and
hashCode.

If you implement equals, then you should use all fields which are either business keys, unique key
constraints in the database or natural primary key candidates. In many cases al three conditions are
the same.

If you do not have a unique key, then you could use the id as business key, if you are careful. The
simpleruleis: do always save your objects before adding them to a Set. Saving an object will generate
theid (if generated).

A sampleimplementation.
cl ass Count ry{

@d @=ener at edVal ue
private Integer id;

@verride
publ i ¢ bool ean equal s(Obj ect 0) {
i f(o instanceof Country)({
Country other = (Country) o;
return id. equal s(other.getld());

71

Primary key mapping

return fal se;

}

@verride
public int hashCode() {
return id. hashCode();

}
}

Hiber nate and equal

When implementing equals you should use instanceof to allow comparing with subclasses.
If Hibernate lazy |oads a one to one or many to one relation, you will have a proxy for the
classinstead of the plain class. A proxy is a subclass. Comparing the class names would
fail.

More technically: Y ou should follow the Liskows Substitution Principle and ignore
Ssymmetricity.

The next pitfall is using something like name.equal s(that.name) instead of
name.equal s(that.getName()). The first will fail, if that is a proxy.

That should be all you need to know, | hope.

6.7. Other XML Id tags

<id>

name=" propertyName"
Name of the class property. This should correspond to afield. name="id" when the class contains
private Integer id; public Integer getld() { returnid;} public void setld(Integer id) { this.id =id;}

type="typename"
A Javatype like java.lang.Integer or a Hibernate type. | recommend using Hibernate types as they
allow to distinguish between date, time and timestamp. Java.lang.Date cannot do thig!

column="column_name"
Name of the database column. Default is taken from name attribute. But you could define one if
you like.

unsaved-value=" nulljany|nonejundefined|id_value"
Specify the value used when the object is not yet saved. This attribute is rarely needed in
Hibernate 3.

access=" field|property|ClassName"
Default strategy used for accessing properties. Standard is property and you should keep this
normally. Thiswill use getters and setters to access fields. Field will access a property directly
by its name. So your variables must be public. Y ou can invent further methods with your own
implementation of the interface org.hibernate.property.PropertyAccessor

72

Primary key mapping

node=" element-name|@attribute-namelelement/@attributel."
Only needed for XML mapping. Read more about this in the Hibernate Reference in chapter XML

Mapping.

Defines the primary key generator. Y ou can find more details below.
Primary key generators

The generators can be subdivided into two groups. The first depends on database specific features and
can only be used with the correct database. The second group is database independent. | recommend
sequence or identity if supported by your database. When you need unique ids across databases you
can uses uuid or guid if supported by your database. An alternative isto use composite ids. The first
columnis an identifier for the database. The second can be any kind of generator.

Database independent

hilo
gets the next high value from a configured database table and generates alow value.

assigned
L ets the application specify the primary key. Useful for natural unique keys.

foreign
Primary key istaken from a one-to-one related class

uuid
128-bit UUID algorithm to generate identifiers of type string, unique within a network (the IP
addressis used). The UUID is encoded as a string of hexadecimal digits of length 32.

increment
Do not use it. Generates only unique keys when no other thread is writing data at the same
moment.

org.hibernate.id.MultipleHiL oPer TableGener ator
Supports multiple hilo generators in asingle table, defined in the EJB3 spec

Database dependent

identity
Uses identity columns which are supported at least by DB2, MySQL, MS SQL Server, Sybase
and HypersonicSQL. The type depends on the database and the column. It can be long, short or
integer.

sequence
uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi or a generator in Interbase. The
returned identifier is of type long, short or int.

73

Primary key mapping

seghilo
The advance of seghilo over sequence is that Hibernate can generate more than one id from one
database request. It uses a hi/lo algorithm to generate identifiers of the typeslong, short or int. You
must specify a database sequence for the high part.

guid
It uses a database-generated GUID string on MS SQL Server and MySQL. Thisis unique across
databases.

native
Selects a generator depending on the database capabilities. Chooses between identity, sequence or
hilo.

select
Retrieves aprimary key assighed by a database trigger.

Composite I d

<cl ass name="BoxTurtl e" tabl e="boxturtle">
<conposite-id class="BoxTurtleld" name="id">
<key- property nanme="favouriteSal ad"></ key- property>
<key- property nanme="I| ocati on"></key- property>
</ conposite-id>

74

Chapter 7. Relation mapping

Relation mapping is the mapping of classes which have arelation. For example Team has arelation to
a department and to a Set of Member.

Department 1:n Teamsm:n Members.

public class Team {
private Integer id;

private String namne;
private Departnment departnent;

private Set nmenbers = new HashSet ();

Figure7.1. Tablestructure

department: keam keam_member member
¥ id —— |team_id |% id
name]__[names |rmember_id 3_/_[name

department_id

Team can beinitialized by Hibernate so that team.getDepartment will give you the Department and
team.getMembers will get you a Set of Members.

7.1. Selecting between List, Set, Map or
array to hold many side

If you map a 1:n or am:n relation you will have a class holding references to many of the other class.
Here isthe class diagram of our first example:

Honey 1 Bee
Y
-id : Integer PR -id : Integer
-name ;. String ¥ -name : string

-honey : Honey
-bees : Bee = new HashSet=Bee bees

The field beesin Honey was of type java.util.Set. Hibernate supports other types as well. In general
you can distinguish the following types:

75

Relation mapping

Figure 7.2. Supported Collections and Maps

—_—
Index to access arnw> Mo index
-

& . ’ .
==Bitend== . r X
\

o =<Btind= JJr' g
A I .
- ==Extends =
% ;/I'ﬁ’ ==Exte

—_— - ;
#
Numeric Index c@ Natural Index colu mD .f
—_—
X
.l'r "
Extend
quXtEnﬂ:-b s et Extend>> SortedSet
l.
\.

SHEOES

The main difference between these approaches is the presence or lack of an index column. A mapping
with an index column is very fast to update. The numeric index is a column starting with a O for the
first element, a1 for the second and so on. If you delete an entry, all following index columns must
be updated. Thisis of course slower. The following lines gives further tips for selection an option.
Although it is more oriented to XML mapping, have alook at it.

N
4= quXTE’Q‘d:-:-

K
.
\

_______;_____

Selecting XML mappings

Each option fit different requirements. The provided source code Developer Guide package
delaliluna.relation.overview holds a simple example of al types of mappings 1:n The following table
gives an overview of XML mapping options.

Annotation mapping | XML mapping Correspondingjava |Prosand cons
type
set java.util.Set Fast, does not need an
index
map java.util.Map Fast to update.Needs
an index column
equivaent to map key,

to access the entry.

map java.util.SortedM ap Same asmap, In
addition, sorting by a
comporator is supported

list javauutil.List Fast to update. Needs an
index column
bag javauutil.List Quite slow to update,

because the whole bag
has to be searched. A
bag can have double
entries

array Array of any mapped | Needs an index column
object

76

Relation mapping

Annotation mapping | XML mapping Correspondingjava |Prosand cons
type
primitive-array Array of Integer, String, | Needs an index column

What do | use?

| use a Set in most cases. If | need a sort order, | make use of SortedSet. If | need some
kind of natural order or | have to update single entries of arelation very often, | use List.
Theuse of Map israre. It isuseful, if your data has some kind of natural map. In the
sample below, we have languages, where the iso country code was used as key. The rest
may have some rare use cases, but in my opinion, you will need them in very rare situation.

Selecting annotation mapping

Annotations do not provide the same structure. Y ou are not forced to use java.util.List with the list
mapping or ajava.util.Set with a set. Thereis only have a annotation and you are allowed to use a
List, a Set or a Collection. Of course, in case you want to use a map you need a type of java.util.Map.
Source code for the following samples can be found in package de.laliluna.relation.overview.

Non indexed

Set hobbi es = new HashSet () ;

Simplified and not perfectly correct: a set works like a map having a hash as a key and the object
asvalue. A hash isaartificial number generated from the data. The number should be unique. Java
accesses an entry in a HashSet by the generated hash. The java.lang.Object classimplements a
hashCode method.

Table 7.1. Sample hash

Hash Value

7043360 aobject of type Developer
8812347 an other developer
1234536 and athird one

Updates to an entry might be slower than an update to an indexed row, but if you delete arow there
are no side effects (e.g. index update) to other elements.

Annotation mapping.

@neToMany(cascade = CascadeType. ALL)
@oi nCol uim(nanme = "devel oper _id")
private Set<Hobby> hobbi es = new HashSet <Hobby>();

The @JoinColumn is actually not necessary. By default the foreign key column would be named
developer_id anyway. If you use annotations, you can use a List aswell.

@neToMany(cascade = CascadeType. ALL)
@oi nCol um(nanme = "devel oper _id")
private List<Hobby> noreHobbi es = new ArrayLi st <Hobby>();

77

Relation mapping

XML mapping.

<set nane="hobbi es" cascade="all">

<key col utmm="devel oper _id" not-nul |l ="true"></key>
<one-to- many cl ass="Hobby" />

</set>

This mapping does not need an index column as map or list. The definition will create atable like

CREATE TABLE t hobby

(
idint4 NOT NULL,

nane varchar (255),
devel oper _id int4,
PRI MARY KEY (i d),
sni pped away the foreign key constraints ...

)
Non indexed but sorted

private SortedSet<Sport> sports = new TreeSet <Sport >(new Sport Conparator());

The characteristics of a sorted set are identical to a Set. In addition, a sortedSet can be sorted. Thisis
not made by the database but in memory. Have alook at the TreeSet documentation of Javato find
out more. One option to sort is to pass a comparator to the TreeSet. The comparator below sorts Sport
items by name.

i mport java.util.Conparat or
public class Sport Conparator inplenents Conparator<Sport> {

public int conpare(Sport ol, Sport 02) {

if (ol = null || ol.getName()= null)
return 1;

if (02 = null || o2.getName()= null)
return -1;

return ol. get Nane(). conpareTo(o02. get Narme());

}

Another option is to implement the Comparable interface in the Sport class. Thiskind of sorting is
called natural sort. In this case you have to apply the SortType.NATURAL.

Annotation mapping.
@neToMany(cascade = CascadeType. ALL)
@oi nCol um(nane = "devel oper id")

@ort (type = Sort Type. COMPARATOR, conparator = Sport Conpar at or. cl ass)
private SortedSet<Sport> sports = new TreeSet <Sport >(new Sport Conparator());

XML mapping.

<set nane="sports" cascade="all" sort="de.lalil una. exanpl el. Sport Conpar at or " >

78

Relation mapping

<key col um="devel oper _i d* not-null="true"></key>
<one-to-many cl ass="Sport" />
</set >

It is probably faster to sort large sets by the database.

Tablestructure.

CREATE TABLE tsport

(
idint4 NOT NULL,

nanme var char (255),
devel oper _id int4 NOT NULL
PRI MARY KEY (id),
sni pped away the foreign key constraints ...

)
Non indexed with a bag mapping

private List ideas = new ArraylList();

A bag has no index. So access to an element always needs to traverse the complete bag until the
element isfound. Thisis only an issue when your bag can be large. Another disadvantage is that one
element can be in abag more than once. So you must be careful when adding entriesto abag. This
kind of mapping is only supported by XML mappings

XML mapping.
<bag nane="i deas" cascade="all">
<key col um="devel oper _id" not-null="true"></key>
<one-to-many cl ass="Idea" />
</ bag>

Tablestructure.

CREATE TABLE ti dea

(
idint4 NOT NULL,

nane var char (255),
devel oper _id int4,
PRI MARY KEY (id),
sni pped away the foreign key constraints ...

)

There is one situation when a bag can be faster than a set. Having a bi-directional one-to-many
relation where inverse="true", i.e. the relation is managed on the one-side as opposed to our example.

Devel oper d = session. get (Devel oper. cl ass, 4711);
| dea i dea = new | dea();

i dea. set Devel oper (d);

d. get | deas() . add(i dea) ;

In this case the getldeas method does not need to initialize the ideas list. When there are many ideas
this can be agreat speed advantage. | ndexed using a java.util.Map

79

Relation mapping

private Map devel opnent Languages = new HashMap() ;

A map is adata structure where each value is accessed by akey. The value can be any kind of object,
starting from primitives (String, Integer, ...) to normal objects. When your datais similar to the
following table you might consider using a map.

Short name Country

de Germany

us United States
fr France

A map is quite fast, asthe key is used as an index to the data.

Annotation mapping.

@ol | ecti onCFf El enent s

@oi nTabl e(name = "devel opnment _| anguages", joi nCol ums =
@oi nCol um(nanme = "devel oper _id"))
@Col um(nanme = "name", nullable = fal se)

private Map<String, String> devel opnent Languages = new HashMap<String, String>();

If we want to change the column of the key, we can overwrite the default column name mapkey in
front of the class with the following annotation:

@\t tributeOverrides({
@\t tributeCverride(name = "devel opment Languages. key",
colum = @ol um(name = "short_nanme"))
})

public class Devel oper inplenents Serializable {

XML mapping.

<map nane="devel opnent Languages" tabl e="t devel opnment | anguage" cascade="all">
<key col um="devel oper _id" not-null="true"></key>

<map- key type="string" colum="short nanme"></ map- key>

<el ement col um="nanme" type="string"></el enent >
</ map>

Tablestructure.

CREATE TABLE t devel opnent | anguage

(
devel oper _id int4 NOT NULL

name var char (255),

short name var char (255) NOT NULL

PRI MARY KEY (devel oper_id, shortnane),

. sni pped away the foreign key constraints ...
)
Below you can see a map mapping to an object

@neToMany(cascade=CascadeType. ALL)

80

Relation mapping

@oi nCol uim(nanme="devel oper _i d")

@mpKey(nane="i socode")

private Map<String, LovedCountry> | ovedCountries =
new HashMap<String, LovedCountry>();

CREATE TABLE | ovedcountry

(
i socode varchar (255) NOT NULL

nane var char (255),
devel oper _id int4,
PRI MARY KEY (i socode),
sni pped away the foreign key constraints ...

iE
Indexed and sorted using java.util.SortedM ap

private SortedMap | ovedCountries = new TreeMap();

A sorted map shares the features of the java.util.Map and can be sorted like the SortedSet. The sort is
not made by the database but in memory. Have alook at the TreeMap documentation of Javato find
out more. It is probably faster to sort large maps by the database. Thisis currently not supported with
annotations but you might mix in a XML mapping. indexterm:[<composite-el ement>}

XML mapping.
<map nane="| ovedCountries" cascade="all" sort="natural ">
<key col um="devel oper _id" not-null="true"></key>

<map- key type="string">
<col umm nane="i socode" ></ col urm>
</ map- key>
<conposi te-el enent cl ass="LovedCountry">
<property name="nane" type="string"></property>
</ conposi t e- el enent >
</ map>

Tablestructure.

CREATE TABLE t| ovedcountri es

(
devel oper _id int4 NOT NULL

nane var char (255),
i socode varchar (255) NOT NULL
PRI MARY KEY (devel oper _id, isocode),
sni pped away the foreign key constraints ...
)

Indexed with numeric index using java.util.List

private List conputers = new ArraylList();

A list mapping always has an index column, if you use XML mapping. This allows afast accessto an

element by the index. To remove an entry in alist is slower as compared to a Set. The reason is that all
the following entries need to get an updated index value. Another advantage of an indexed List is that

the entries will keep their sort order.

Annotation mapping.

81

Relation mapping

@neToMany(cascade = CascadeType. ALL)
@oi nCol um(name = "devel oper id")
@ ndexCol um(nane = "listindex")
private List<Conputer> conputers = new ArrayLi st <Comput er>();

XML mapping.
<list nanme="conputers" cascade="all">
<key col um="devel oper _id" not-null="true"></key>
<list-index colum="1listindex"></list-index>
<one-to-many cl ass="Conputer" />
</list>

Tablestructure.

CREATE TABLE t conput er
(

idint4 NOT NULL

nane var char (255),

devel oper _id int4 NOT NULL

l'istindex int4,

PRI MARY KEY (i d),

sni pped away the foreign key constraints ...

)

Indexed with an idbag mapping

private List dreams = new ArraylList();

Anidbag mapping is only suitable for many-to-many mappings. It has an index, it is defined by
the tag collection-id. So an update is asfast as a set, list or map. Note: the primary key generator
of type native is not supported at the moment. Once again this kind of mapping is not supported by
annotations. Closest is probably a List mapping with an index column.

XML mapping.

<i dbag nane="dreans" cascade="all" tabl e="devel oper_dreant >
<col l ection-id type="integer" colum="id">
<gener at or cl ass="sequence" >
<par am nane="sequence" >devel oper _dream i d_seq</ par anpr
</ gener at or >
</col |l ection-id>
<key col um="devel oper _i d* not-null="true"></key>
<many-t o- many col um="dream i d" cl ass="Dreant ></ many-t o- many>
</i dbag>

Tablestructure.

CREATE TABLE devel oper _dr eam
(
devel oper _id int4 NOT NULL
dream.id int4 NOT NULL
idint4 NOT NULL
PRI MARY KEY (id),
sni pped away the foreign key constraints ...

82

Relation mapping

)
Indexed - array of objects

private JuneBeetl e juneBeetles[];

In my opinion, an array isonly useful if you do not have to add or remove items from your array. An
array aways needs an index column.

Annotation mapping.

@neToMany(cascade = CascadeType. ALL)
@oi nCol um(name = "devel oper _id")

@ ndexCol utm(name = "listindex")
private JuneBeetl e juneBeetles[];

XML mapping.

<array nane="juneBeetl|l es" cascade="all">
<key col um="devel oper _id" not-null="true"></key>
<list-index colum="1]istindex"></list-index>
<one-to-many cl ass="JuneBeetle" />

</ array>

Tablestructure.

CREATE TABLE tj unebeetl e

(
idint4 NOT NULL,

nane var char (255),

devel oper _id int4,

l'istindex int4,

CONSTRAI NT tj unebeet| e_pkey PRI MARY KEY (id),
sni pped away the foreign key constraints ...

)
Indexed - array of primitives
private Integer[] favouriteNunbers;

Y ou will probably need this mapping only in rare cases, i.e. if you need access to primitives. An array
always needs an index column. This kind of mapping is not EJB3 compliant and only possible with
Hibernate extensions (CollectionOfElements).

Annotation mapping.
@ol | ecti onOf El enent s

@ ndexCol utm(name = "listindex")
private int[] favouriteNunbers;

XML mapping.

<primtive-array name="favouriteNunbers" tabl e="tfavouritenunber">

83

Relation mapping

<key col um="devel oper _i d"></ key>

<list-index colum="11istindex" base="0"></|ist-index>

<el enent type="integer" col um="nunber"></el ement >
</primtive-array>

Tablestructure.

CREATE TABLE tfavouritenunber

(
devel oper _id int4 NOT NULL

nunmber int4,
listindex int4 NOT NULL
CONSTRAI NT tfavouritenunber_pkey PRI MARY KEY (devel oper_id, |istindex),
sni pped away the foreign key constraints ...
)

7.2. Uni- and Bi-directional relations

We have to distinguish between uni-directional and bi-directional relations.
Uni-directional

Uni-directional is arelation where one side does not know about the relation.

public class Conputer {
private Integer id;
private String nane;
snip
public class Devel oper {
private Integer id;
private String nane;
private List conputers = new ArraylList();
snip

In this case you can only set or delete the relation on one side
devel oper. get Conput er s() . add(conput er) ;
or

devel oper. get Conput ers().renove(conputer);
Foreign key constraints

When there isaforeign key constraint on the relation, you must specify nullable=false in the
JoinColumn annotation or add not-null="true" in the key tag.

Annotation mapping.

@neToMany(cascade = CascadeType. ALL)

@oi nCol um(nane = "devel oper i d", null abl e=fal se)

@ ndexCol um(nane = "listindex")

private List<Conputer> conputers = new ArrayLi st <Conput er>();

XML mapping.

84

Relation mapping

<set nane="conputers" table="tconmputer” >

<key col um="devel oper _i d* not-null="true"></key>
<one-t o- many cl ass="Conputer"/>

</set >

Bi-directional

In a bi-directional relation both sides know about the other side.

public class Conputer {
private |Integer id;
private String nane;
privat e Devel oper devel oper;
snip
public class Devel oper {
private |Integer id;
private String nane;
private List conputers = new ArraylList();
snip

In this case you must always set the relation on both sides. If you do not do this your session will
contain false datal

devel oper. get Conput ers() . add(conput er) ;
conput er. set Devel oper (devel oper);

or

devel oper. get Conput ers().renove(conputer);
conput er. set Devel oper (nul |);

When a computer cannot exist without a developer, i.e. the foreign key has a not null constraint, then
the following will delete the relation.

devel oper. get Conput ers() . renove(conmputer);
sessi on. del et e(conput er) ;

Foreign key constraints In a bi-directional relation Hibernate can cause exceptions of type foreign key
violations. To prevent this you must use inverse="true" on the many side. Inverse=true defines that a
side does not manage arelation. In our example, the department side below is not responsible for the
relation and team will not be saved, if only the department is saved. Y ou must save the team to have
the relation set or use cascade on the department side.

class department.

<set nane="teans" table="tteam' inverse="true">
<key col utm="depart nent _i d"></ key>
<one-t o-many cl ass="Tean!'/>

</set>

snip

classteam.

<many-t o- one nane="departnent" cl ass="Departnent">
<col um name="departnent id" not-null="true"></col um>
</ many-t o- one>

85

Relation mapping

7/.3. Cascading

Cascading means that if you insert, update or delete an object, related objects are inserted, updated or
deleted as well. If you do not use cascade you would have to save both objects independently. If you
initially create objects and you do not cascade then you must save each object explicitly.
Departnment d = new Departnment ();

Teamtl = new Team();

Team t2 = new Team();

d. get Teans().add(t1);

d. get Teans() . add(t2);

t 1. set Depart nent (d);

t 2. set Depart nent (d);

sessi on. save(d);

sessi on. save(t1);
sessi on. save(t1);

If you configure cascade on the department side

Annotation.

@neToMany(cascade = {CascadeType. ALL})
private Set<Teant teans;

XML.
<set nane="teans" table="ttean! inverse="false" cascade="all">
<key col utm="depart nent _i d"></key>

<one-to-many cl ass="Tean!'/>
</set >

then you only need to call

sessi on. save(d);

and the rest will be automatically cascaded. Y ou can combine options, as well.
JPA Standard Annotation.

@neToMany(cascade = {CascadeType. MERGE, CascadeType. PERSI ST})

Hiber nate Annotation.

@neToMany
@ascade({CascadeType. MERGE, CascadeType. PERSI ST})

XML.

<set nane="teans" table="tteam' inverse="fal se"
cascade="persi st, | ock, repli cat e, save- updat e, del et e, del et e- or phan, ref resh" >

86

Relation mapping

The following tables explains the different cascade types available. Y ou will see that
they are linked to methods from the session like session.persist(), session.delete(),
session.buil dL ockRequest(L ockOptions.NONE).lock(), ...

> Java Persistence and Hibernate provides both away to configure cascading. If you use the
Hibernate API (the session), then | recommend to use @Cascade(...). If you use the Java
Persistence API (EntityManager), then you should use the cascading options inside of the
relation @OneToMany(cascade = {...}). The simple reason: the JPA misses optionsto
cascade session APl methods like save, update or replicate.

Table 7.2. JPA Annotation Cascade Types

Type Description

ALL Cascades al but not the deletion of orphan
members.

PERSIST session.persist()

MERGE session.merge()

REMOVE session.delete(), does not delete orphan members

REFRESH session.refresh() rereads object from the datbase
(useful after trigger execution)

Table 7.3. Hibernate Annotation and XML cascade types

Type Description

none Default style, do not cascade

all Cascades all but not the deletion of orphan
members.

all-delete-orphan All + delete-orphan

persist session.persist()

save-update session.saveOrUpdate()

save() update()

lock session.buildL ockRequest(L ockOptions.NONE).lack()

delete Session.delete()

does not delete orphan members delete-orphan

Deprecated, Deletes orphan members, for refresh

example you delete the department and the teams

must be deleted as well.

session.refresh() rereads object from the database |evict or detach

(useful after trigger execution)

Session.evict() removes an object from the replicate

session cache

Orphan Removal

87

Relation mapping

If you remove for example an invoice position from the collection of an invoice, it is called an orphan
entit. If you configure orphan removal it will be deleted just by fact that it was removed from the
collection.

Since Java Persistence 2.0 orphan removal, the Hibernate cascade type is deprecated. Here isthe
correct way to useit.

@neToMany (cascade = CascadeType. PERSI ST, or phanRenpval = true)
private List<lnvoi cePosition> positions;

Usage.

I nvoi ce invoice = (lnvoice) session.get(lnvoice.class, 4711);
i nvoi ce. get Positions().renove(l);

Under standing the examples

Y ou can find the source code for annotation mapping in the mappi ng-exampl es-annotation
project. The sourcecode of the XML mappingsis in the mapping-examples-xml project.
Each example references a package in the provided source code. We will explain the
relevant part of the mapping, resulting tables and some more information in the book. Y ou
can find classes and a test class showing examples how to insert, update, delete and query
the mapped objects in the source code.

7.4. 1:1 relation

Full source code is provided in package: de.laliluna.relation.one2one If a class has arelation to
another class then you have the option to map this as arelation or as a component. A relation is more
useful if both class are used for themselves. Having arelation between order and invoice, you will
probably have business methods dealing only with the order or only with the invoice, so arelationis
the better choice.

Uni-directional

Orderl has arelation to invoice. Invoicel does not have any notion of the relation.

Classes Tables
Orderl @ orderl B
-id : Integer +id intd
-number ; String number varchar(255)
-invoice ; Invoicel #invoice id int4
; |
I
|
involce :
. invoicel B
Invoicel Lo | +id intd
-id : Integer numiber wvarchar(255)
-number ;. String

88

Relation mapping

Annotation mapping.

i mport javax. persistence. CascadeType;
i mport j avax. persi stence. Joi nCol um;
i mport j avax. persistence. OneToOne;

....... snip ...
@neToOne(cascade = CascadeType. ALL)
@oi nCol um(nanme = "invoice_id")

private Invoicel invoice;

@One20ne specifies the relation. Cascade is explained in chapter xref:cascading. @JoinColumn
defines the column in the order table having aforeign key relation to the invoice table. This annotation
isoptional. By default the column name targetClassName_id would be chosen.

XML mapping. The used tag is many-to-one in combination with unique set to true. This might
be disturbing but it is the only way to define a uni-directional one-to-one relation. The one-to-one tag
would not allow to configure the foreign key in the order table.

<hi ber nat e- mappi ng package="de.l aliluna.rel ati on. one2one" >
<cl ass name="Order1" table="torder">
....... snip
<many-t o- one nane="i nvoi ce" class="Invoi cel" cascade="all" uni que="true">
<col um name="i nvoi ce_i d"></col um>
</ many-t o- one>
</ cl ass>
</ hi ber nat e- mappi ng>

The Invoice mapping file does not contain any tags related to thisrelation. It is uni-directional .
Resulting tables:

CREATE TABLE tinvoi ce
(
idint4 NOT NULL
nunber varchar (255),
CONSTRAI NT ti nvoi ce_pkey PRI MARY KEY (i d)

)
CREATE TABLE t order
(
idint4 NOT NULL
nunber varchar (255),
i nvoice id int4,
PRI MARY KEY (id),
FOREI GN KEY (i nvoi ce_f k)
REFERENCES tinvoice (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON

)
Below you can find some usage samples:

/* create entries and set relation */

Orderl order = new Order1(null, "123");

I nvoi cel i nvoice = new I nvoicel(null, "456");

order. set | nvoi ce(i nvoi ce);

sessi on. save(order); // cascade will save invoice as well

/* delete an invoice*/
/1 reattach order (update) to bind it to the current session
sessi on. updat e(order1); // cascade al so updates the invoice

89

Relation mapping

sessi on. del et e(order 1. getlnvoice());
order 1. setlnvoice(null);

/* select all order and initialize the invoices with one join (very fast) */
Li st<Order1> |list = session.createQuery("fromOderl o left join fetch o.invoice")
dist();

/*sel ect orders where invoice nunber starts with 2 */
Li st<Order1> |ist = session.createQuery(
"from Orderl o where o.invoice.nunber like '2% ").list();

/*sel ect sone invoices where order number starts with 1 */
Li st <l nvoi cel> i nvoi ces = session. creat eQuery(
"select o.invoice fromOderl o where o.nunber like "1% ").list();

Bi-directional
Classes Tables
Order2 { orderl i
-id : Integer +id intd
-number : String number wvarchar(255)
-invoice : Invoice? S T
| _
X I
invoice I
ordefr 1 I I
K W/ i invoicel B
Invoice2 O | +id intd
-id ; Integer number wvarchar(255)

-number : String
-order ; Order2

Annotation mapping.

i mport javax. persi stence. CascadeType;
i mport j avax. persistence.Entity;

i mport j avax. persi stence. Joi nCol um;
i mport j avax. persistence. OneToOne;
....... snip

@ntity
public class Order2 inplenments Serializable {

@neToOne(cascade = CascadeType. ALL)
@oi nCol um(nanme = "invoice_id")
private Invoice2 invoice;

@One20ne specifies the relation. Cascade is explained in chapter xref:cascading. @JoinColumn
defines the column in the order table having aforeign key relation to the invoice table. This annotation
isoptional. By default the column name targetClassName_id would be chosen.

i mport j avax.persistence. Entity;

90

Relation mapping

i mport j avax. persi stence. OneToOne;
....... snip

public class Invoice2 inplenments Serializable {
@neToOne(mappedBy="i nvoi ce")
private Order2 order;

@OneToOne(mappedBy="invoice") defines that the relation is managed by the Order2 class and not
by the Invoice2 class. Only if you assign the invoice in the Order2 class, Hibernate will reflect the
relation in the database. Keep in mind that you have to set bi-directional relations on both sides, if you
do not want to render your Hibernate session in an inconsistent state.

XML mapping.

<hi ber nat e- mappi ng package="de.l aliluna.rel ati on. one2one" >
<cl ass name="Order?2" table="torder2">
....... snip........
<many-t o- one nane="invoi ce" class="Invoi ce2" cascade="all" uni que="true">
<col um name="i nvoi ce_i d"></col um>
</ many-t o- one>
</ cl ass>
</ hi ber nat e- mappi ng>

<hi ber nat e- mappi ng package="de. | al i | una. exanpl e2" >
<cl ass name="| nvoi ce2" tabl e="tinvoi ce2">

......... snip........
<one-t o0-one nane="order" property-ref="invoice"/>
</ cl ass>

</ hi ber nat e- mappi ng>

The resulting tables are the same as mentioned above. | found that the following works as well. The
Hibernate reference proposes the foreign key reference.

<one-t o0-one nane="order" cl ass="Order2"/>

Now, let’s have alook at some samples of use. It isimportant that you aways set the relations on both
sides. If not, you will render your Hibernate session into an inconsistent stete.

order. set | nvoi ce(i nvoi ce);
i nvoi ce. set Order (order);
sessi on. save(order);

/* create and set relation */
Order2 order = new Order2(null, "123");
I nvoi ce2 i nvoice = new I nvoice2(null, "456");
/] bi-directional set on both sides !!!
order. set | nvoi ce(i nvoi ce);
i nvoi ce. set Order (order);
sessi on. save(order); // cascade will save order as well

/* delete an invoice
* order is detached because the old session is closed, so reattach it using
* update */

sessi on. updat e(order); // cascade al so updates the invoice

sessi on. del et e(order. getl nvoi ce());

order. setlnvoi ce(null);

/[* find orders where invoice nunber starts with 2 */

91

Relation mapping

Li st<Order2> |ist = session.createQuery(
"from Order2 o where o.invoice.nunber like '2% ").list();

/* find invoices where order nunber starts with 1 ");
Li st <l nvoi ce2> i nvoi ces = session. creat eQuer y(
"select i fromlnvoice2 i where i.order.nunber like "1% ").list();

Relation to aprimary key

The samples above use aforeign key relation. Sometimes both tables should share the same primary
key. In this case we need arelation to the primary key. The primary key of the second table is set to
the same value as the table of thefirst table. Thisis managed by Hibernated.

Classes Tables
Order3 (order3 B
-id : Integer +id intd |
-number : String number wvarchar(255)
order 1
(invoice3 h
i ce3 +#id intd -
_ Yo e nurmber varchar[ZSS}J
-id : Integer
-number : String
-order : Order3

Annotation mapping.

i mport j avax. persi stence. CascadeType;

i mport j avax. persistence. Entity;

i mport j avax. persi stence. Gener at edVal ue;

i nport j avax. persistence. | d;

i mport j avax. persi stence. OneToOne;

i mport j avax. persi stence. Pri mar yKeyJoi nCol um;

i mport org. hi bernat e. annot ati ons. Generi cGener at or ;
i mport org. hi bernat e. annot ati ons. Par anet er ;

....... snip
@ntity
public class Invoice3 inplenents Serializable {
@d
@zener at edVal ue(generator = "foreign_id")
@zenericCGenerator(nane = "foreign_id", strategy = "foreign", paranmeters = {
@rar anmet er (name = "property", value = "order") })

private Integer id;

92

Relation mapping

@neToOne(cascade = CascadeType. ALL, opti onal =f al se)
@r i mar yKeyJoi nCol umm
private Order3 order;

The Order3 class does not contain any relation specific annotation.

XML mapping.

<?xm version="1.0" encodi ng="UTF-8"?>
<I DOCTYPE hi ber nat e- mappi ng PUBLI C "-// Hi bernat e/ H ber nate Mappi ng DID 3. 0/ / EN'
"http://hibernate. sourcef orge. net/ hi ber nat e- mappi ng-3. 0. dtd" >
<hi ber nat e- mappi ng package="de. | al i | una. exanpl e2" >
<cl ass name="I nvoi ce3" tabl e="tinvoice3">
<id nane="id" >
<gener ator class="foreign">
<par am nane="property" >order </ paranr
</ gener at or >
</id>

<one-to0-one nane="order" class="Order3" [>
........ snip

</ cl ass>
</ hi ber nat e- mappi ng>

Y ou can add a constraint as well:

<one-to-one nane="order" cl ass="Order3" constrai ned="true" />

Tablestructure.

CREATE TABLE ti nvoice3
(
idint4d NOT NULL
nunber varchar (255),
PRI MARY KEY (id),
FOREI GN KEY (i d)
REFERENCES t order3 (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON
i
CREATE TABLE torder3
(
idint4d NOT NULL
nunber varchar (255),
PRI MARY KEY (i d)
.

Samples of use:

/* create and set relation */

Order3 order = new Order3(null, "123");

I nvoi ce3 i nvoice3 = new I nvoi ce3(null, "456");

i nvoi ce3. set Order (order);
sessi on. save(order);
sessi on. save(i nvoi ce3);

/* delete an invoice */
sessi on. bui | dLockRequest (LockOpti ons. NONE) . | ock(i nvoi ce3); // reattach using | ock

93

Relation mapping

sessi on. del et e(i nvoi ce3) ;

7.5.1:n

Full source code is provided in package: de.laliluna.relation.one2many Uni-dir ectional

We have aclass JavaClubl having a set of JavaClubMemberl. The member does not know about the
relation.

Classes Tables
C JavaClubl javaclub1 =],
o id : Integer 2= id int4{10)
o name : String name uaﬁ;n@mg?ﬂ

o members ; Set=lavaClubMember] = |

o serialversionUID : lang

id=club id
embers
(9 JavaClubMemberl javaclubmemberl |
o id : Integer o1 id int4{10)
o name : String name varchar(255)
o serialVersionUID : lang ae club id int4(10]

As a consequence, the relation is managed on the one-side of the relation. Thiskind of relationship is
not very efficient. Aninsert of aclub with two membersleadsto 5 queries. If thisrelation is created
or updated frequently, you should consider to create a bi-directional relation where the many-side
manages the relation. This can be achieved with inverse="true" or the mappedBYy attribute. Generated
queries:

Hi bernate: insert into tjavaclub (nane, id) values (?, ?)

Hi bernate: insert into tjavacl ubmenber (name, club_id, id) values (?, ?, ?)
Hi bernate: insert into tjavacl ubmenber (name, club_id, id) values (?, ?, ?)
Hi bernate: update tjavacl ubmenber set club_id=? where id=?

Hi bernate: update tjavacl ubmenber set club_id=? where id=?

Annotation mapping.

i mport javax. persistence. Joi nCol um;

i mport j avax. persi stence. OneToMany;

i mport javax. persistence. Entity;

........ snip........

@ntity

public class JavaC ubl inplenents Serializable {
@neToMany
@oi nCol um(nanme="cl ub_i d", null abl e=fal se)

94

Relation mapping

private Set<JavaC ubMenber 1> nenbers = new HashSet <JavaCl ubMenber 1>()
The class Clubl has no annotations related to the relation.

XML mapping.

public class JavaC ubl inplenents Serializable {
private Set nmenbers = new HashSet ();

public Set getMenbers() {

return nenbers;

public void set Menmbers(Set nenbers) {
this. menbers = nenbers;

<hi ber nat e- mappi ng package="de.l al il una.rel ati on. one2many" >
<cl ass nane="JavaC ubl" tabl e="tjavacl ub">

...... snip ...
<set nane="nenbers" >
<key col um="cl ub_i d" not-null="true"></key>
<one-to-many cl ass="JavaC ubMenber 1"/ >
</set >
</cl ass>

</ hi ber nat e- mappi ng>

Tablestructure.

CREATE TABLE tj avacl ub
(
idint4d NOT NULL
nane var char (255),
CONSTRAI NT tj avacl ub_pkey PRI MARY KEY (i d)
i
CREATE TABLE tj avacl ubnenber
(
idint4d NOT NULL
nane var char (255),
club_id int4 NOT NULL,
PRI MARY KEY (id),
FOREI GN KEY (cl ub_id)
REFERENCES tj avacl ub (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON

.
Some examples of use:

/* create and set relation */

JavaC ubl clubl = new JavaC ubl("H b cl ub");

JavaC ubMenber 1 nenberl = new JavaC ubMenber 1("Eric");

JavaCl ubMenber 1 nenber2 = new JavaC ubMenber 1(" Peter");

[/l relation is uni-directional => we can only set the relation on one
/1 side

cl ubl. get Menber s() . add(nenber 1) ;

cl ubl. get Menber s() . add(nenber 2) ;

sessi on. save(cl ubl);

sessi on. save(nmenber 1) ;

95

Relation mapping

sessi on. save(nmenber 2) ;

[* delete a nmenber */

sessi on. updat e(cl ubMenber 1) ;

Javad ubl clubl = (Javad ubl) session.createQuery(
"fromJavaC ubl ¢ where ? in elenments(c. nenbers) ").setEntity(
0, clubMenber1). uni queResult();

[l first take away the menber fromthe club, than delete it.

cl ubl. get Menber s() . remove(cl ubMenber 1) ;

sessi on. del et e(cl ubMenber 1) ;

/* sinple select which initializes the club only, further queries are issued,
* if you access the menbers*/
List |ist = session.createQuery("from JavaC ubl1").list();

/* select using fetch to initialize everything with one query and renove
* double entries fromthe result */
list = session.createQuery(
"fromJavaC ubl c left join fetch c. menbers")
set Resul t Transformer (Criteria. D STINCT_ROOT_ENTITY).list();

/* sanme query using criteria instead of HQL */
list = session.createCriteria(JavaC ubl. cl ass)
. set Fet chMode(" menbers", Fet chMode. JA N)
.setResul t Transfornmer(Criteria. Dl STINCT_ROOT_ENTITY).list();

Hibernate creates one instance for each line of aresult set.\newline If a club has two members, you
will receive two lines when you select the club and left join the members. Y our list would have double
entries of clubs. Y ou had to use a HashSet in former times or you received double entries.

Set set = new HashSet (session.createCriteria(JavaC ubl. cl ass)
. set Fet chMode(" menbers", FetchMode.JON).list());

Now thereis a better approach:

Li st result = new DistinctRoot EntityResultTransformer()
.transfornili st (session. createQuery("from JavaClubl c left join fetch c. menbers")

dist());
If you use criteria queries, take the following approach.

List list = results = session.createCriteria(Javad ub3. cl ass)
. addOr der (Or der. desc(" nane"))
. set Fet chMode(" menbers", Fet chMode. JO N)
.set Resul t Transfornmer(Criteria. Dl STINCT _ROOT _ENTITY)).list();

Uni-directional (other side)

We have a class JavaClub2 and JavaClubMember2 where the club does not know about the relation.
Thiskind of relation is more efficient than the one before. When you create a club with two members
only three queries are issued.

Hi bernate: insert into tjavaclub (nane, id) values (?, ?)
Hi bernate: insert into tjavacl ubnmenber (name, club_id, id) values (?, ?, ?)
Hi bernate: insert into tjavacl ubnmenber (name, club_id, id) values (?, ?, ?)

Classes Tables

96

Relation mapping

= >
e JavaClub2 javaclub2 =i
o jsenaj‘u"ersanID lang E: id int4(10)

o id : Integer name wvarchar(255)
o Name : 5tring

club id=club id
(% JavaClubMember2
o serialVersionUID @ long javaclubmember2 ;l
o id : Integer a2 id int4(10)
o name : String ;ame varchar{255)
o club : JavaClub 2 sl club id int4{10)

Annotation mapping.

i nport j avax. persi stence. Entity;

i nport j avax. persi st ence. Joi nCol um;

i nport j avax. persi st ence. ManyToOne;

..... snip

@ntity

public class JavaCl ubMenber2 inplenments Serializabl e{

@manyToOne
@oi nCol um(name="cl ub_i d")
private JavaC ub2 cl ub;

The @ManyToOne annotation specifies the relation. @JoinColumn(name="club_id") specifies how
the tables are joined. It is optional and you may rely on the default values.

XML mapping.

i mport java.io.Serializable;
i mport java.util.HashSet;
i mport java.util. Set;

public class JavaC ubl inplenents Serializable {
private Set nmenbers = new HashSet ();
public Set get Menmbers() {
return nenbers;
}
public void set Menmbers(Set nenbers) {
thi s. menbers = nenbers;

<hi ber nat e- mappi ng package="de. | al i | una. exanpl e3">
<cl ass nane="JavaCd ubMenber 2" tabl e="tj avacl ubnenber" >

...... snip........
<many-t o- one nanme="cl ub" cl ass="JavaC ub2">
<col um name="club_id" not-null="true"></col um>

</ many-t o- one>

97

Relation mapping

</ cl ass>
</ hi ber nat e- mappi ng>

The resulting tables are of course the same asin our first example. Examples of use:

/* create and set relation */

Javad ub2 cl ub2 = new JavaC ub2("H b cl ub");

JavaCl ubMenber 2 nenber1l = new JavaC ubMenber 2("Eric");

JavaCl ubMenber 2 nenber2 = new JavaC ubMenber 2(" Peter");

menber 1. set Cl ub(cl ub2);

menber 2. set Cl ub(cl ub2);

/1 we did not configure any cascadeType, so we have to save any of the objects
sessi on. save(cl ub2);

sessi on. save(nmenber 1) ;

sessi on. save(nmenber 2) ;

[* delete */
/1 just delete, we do not have to update or reconnect
sessi on. del et e(cl ubMenber 2) ;

/* sel ect JavaC ubMenber but do not initialize the Cub */
List |ist = session.createQery("from JavaC ubMenber2").list();

/* sel ect JavaCl ubMenbers and initialize the club directly using a join */
List |ist = session.createQuery(
"from JavaC ubMenber2 mleft join fetch mclub").list();

/* sane using criteria instead of HQ. */
List |ist = session.createCriteria(JavaC ubMenber 2. cl ass) . set Fet chMode(
"club", FetchMode.JO N).list();

Bi-directional

Classes Tables
'C) JavaClub3 javaclub3 =
o serialVersionUID : long ;f' id int4(10)
o id : Integer name wvarchar{255)

o name : 5tring |

o members : Set=]avaClubMember3=

id=club id

cIuL - memhers

{9 I iu M Emitier javaclubmember3

o seriaVersionUID : lang i':' E intd(10)

name varchar(255)
a2 club_id int4(10)

id : Integer

[#]

o name : 5tring

o club :JavaClub 3

In alto nrelation you should consider to manage the relation on the many-side (= JavaClubmember),
asthisleadsto less queries, if you set arelation. Queries, if the relation is managed on the one-side:

98

Relation mapping

Hi bernate: insert into tjavaclub (nane, id) values (?, ?)

Hi bernate: insert into tjavacl ubmenber (name, club_id, id) values (?, ?, ?)
Hi bernate: insert into tjavacl ubmenber (name, club_id, id) values (?, ?, ?)
Hi bernate: update tjavacl ubmenber set club_id=? where id=?

Hi bernate: update tjavacl ubmenber set club_id=? where id=?

Queries, if the relation is managed on the many-side:

Hi bernate: insert into tjavaclub (nane, id) values (?, ?)
Hi bernate: insert into tjavacl ubmenber (name, club_id, id) values (?, ?, ?)
Hi bernate: insert into tjavacl ubmenber (name, club_id, id) values (?, ?, ?)

Annotation mapping.

i mport javax. persistence. Entity;
i mport javax. persistence. Joi nCol um;
i mport j avax. persi stence. ManyToOne;

..... snip

@ntity

public class JavaC ubMenber3 inplenments Serializabl ef
@banyToOne
@oi nCol um(nane = "club_id", nullable = fal se)

private JavaC ub3 cl ub;

@ManyToOne specifies the relation. @JoinColumn(name = "club_id", nullable = false) specifies
how the table is joined and that a member cannot exist without a club, club_id cannot be null.

i mport java.util.HashSet;

i mport java.util. Set;

i mport j avax. persistence. Entity;

i mport j avax. persi stence. OneToMany;

...... snip

@ntity

public class JavaC ub3 inplenents Serializable {

@neToMany(mappedBy="cl ub")
private Set<JavaC ubMenber 3> nmenbers = new HashSet <JavaC ubMenber 3>() ;

@OneToMany(mappedBy="club") specifies that the relation is managed by the club property of the
JavaClubMember 3.

XML mapping. Although you might choose, which side manages the relation, you must manage
the relation on the many-side, if your foreign key (club_id) cannot be null. In this case set, you have to
use inverse="true". See the discussion in xref:RefUsingrel ationsandcascading.

i mport java.util.HashSet;
i mport java.util. Set;
......... snip......
public class JavaC ub3 inpl enents Serializable {
private Set nmenbers = new HashSet ();
public Set get Menbers() {
return nenbers;

}

public void set Members(Set nenbers) {
this. menbers = nenbers;

99

Relation mapping

public class JavaC ubMenber 3 i npl enents Serializable {
private JavaC ub3 cl ub

publ ic JavaC ub3 get Cl ub() {
return club;
}

public void setd ub(JavaC ub3 cl ub) {
this.club = cl ub;

<hi ber nat e- mappi ng package="de. | al i | una. exanpl e3" >
<cl ass nane="JavaC ub3" tabl e="tjavacl ub">

..... snip
<set nane="nmenbers" inverse="true">
<I-- we have a set and the relation is managed on the other side -->
<key col um="cl ub_i d" not-null="true"></key>
<I-- defines how the tables are joined. -->
<one-to-many cl ass="JavaC ubMenber 3"/ >
<Il-- target class of the relation -->
</set >
</ cl ass>

</ hi ber nat e- mappi ng>

<hi ber nat e- mappi ng package="de. | al i | una. exanpl e3" >
<cl ass nane="JavaC ubMenber 3" tabl e="tj avacl ubnenber" >

......... snip
<many-t o- one nanme="cl ub" cl ass="JavaC ub3">
<I-- specifies property and target class -->
<col um name="club_id" not-null="true"></colum> <!-- join colum-->
</ many-t o- one>
</ cl ass>

</ hi ber nat e- mappi ng>

The resulting tables are once again the same. Do not forget to set and delete the relations on both
sides.

menber 1. set Cl ub(cl ub) ;
cl ub. get Menber s() . add(nenber 1) ;
menber 2. set Cl ub(cl ub) ;
cl ub. get Menber s() . add(nenber 2) ;

Examples of use:

/* create and set relation */

JavaCl ub3 club = new JavaC ub3("Hi b club");

JavaCl ubMenber 3 nenber 1l = new JavaC ubMenber 3("Eric");
JavaCl ubMenber 3 nenber2 = new JavaCd ubMenber 3(" Peter");
/1 relation is bi-directional => we nust set the relation on both sides
menber 1. set Cl ub(cl ub) ;

menber 2. set Cl ub(cl ub) ;

cl ub. get Menber s() . add(nenber 1) ;

cl ub. get Menber s() . add(nenber 2) ;

/1 no cascade configured so save everything

sessi on. save(cl ub);

100

Relation mapping

sessi on. save(nenber 1) ;
sessi on. save(nenber 2) ;

[* delete */

/1l we must reattach the nenber to the new session

sessi on. updat e(cl ubMenber 3) ;

cl ubMenber 3. get C ub() . get Menber s() . remove(cl ubMenber 3) ;
sessi on. del et e(cl ubMenber 3) ;

/* have a look in the uni-directional cases for query sanples */
Bi-directional with join table

Sometimes you do not want to have aforeign key in the table of the many side but define the relation
in aseparate join table.

Classes Tables
C JavaClub4 javaclub4 =i
o serialVersionUID : lang ;f' id intd(10)
B name varchar(255)
o name : String
o members ; Set<lavaClubMemberd =
id=club id
clyb -members
i< JavaClubMemberd club_member ;J
B i ;
o seriaWersionUID : long #= member_id int4(10]
o id : Integer 62 club_id int4(10)
o hame : String
a club : JavaClub4 id=member_id

javaclubmemberd |
2 id int4(10)
name varchar(255)

Annotation mapping.

i mport java.io.Serializable;

i mport java.util.HashSet;

i mport java.util. Set;

i mport j avax. persistence. Entity;

i mport j avax. persi stence. OneToMany;
..... snip

@ntity

public class JavaC ub4 inplenents Serializable {

@neToMany(mappedBy="cl ub")

101

Relation mapping

private Set<JavaC ubMenber 4> nenbers = new HashSet <JavaCl ubMenber 4>()

@OneToMany(mappedBy="club") defines the relation and that it is managed by the property club of
JavaClubMember.

i mport java.io.Serializable;

i mport j avax. persistence. Entity;

i mport j avax. persistence. Joi nCol um;
i mport j avax. persi stence. Joi nTabl e;
i mport j avax. persi stence. ManyToOne;

c..osnip L.
@ntity
public class JavaC ubMenber4 inplenments Serializable {
@manyToOne
@oi nTabl e(name = "cl ub_menber",
j oi nColums = { @oi nCol um(name = "nenber _id") },
i nverseJoi nCol ums = { @oi nCol um(name = "club_id") }

)

private Javad ub4 cl ub;

@JoinTable(name = "club_member".., specifies the join table. joinColumns specifies which columns
reference the JavaClubMember primary key. inverseJoinColumns specifies which columns reference
the JavaClub primary key.

XML mapping. On the JavaClub4 side, we define a many-to-many relation and set the
JavaClubMember4 to unique. This might be confusing but is the correct approach. Annotation
mapping is somewhat clearer for thiskind of mapping. | set inverse to true, to have more efficient
updates.

public class JavaC ubMenber4 inplenments Serializable {
private Javad ub4 cl ub;

publ i c JavaCl ub4 get Cl ub() {
return club;

}

public void setd ub(Javad ub4 cl ub) {
this.club = cl ub;

}

public class JavaC ub4 inplenents Serializable {
privat e Set <JavaCl ubMenber 4> nmenbers = new HashSet <JavaC ubMenber 4>();

publ i c Set<JavaCd ubMenber 4> get Menbers() {
return nenbers;

}

public void set Menber s(Set <JavaC ubMenber 4> nenbers) {
t hi s. nenbers = nenbers;

}

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C "-// Hi bernat e/ Hi ber nat e Mappi ng DID 3. 0/ / EN'
"“http://hibernate. sourcef orge. net/ hi ber nat e- mappi ng-3. 0. dtd" >

102

Relation mapping

<hi ber nat e- mappi ng package="de. | al i | una. exanpl e3" >
<cl ass nane="JavaC ub4" tabl e="tjavacl ub4">
........ snip
<set nane="nenbers" inverse="true" table="club_nenber">
<key col um="cl ub_i d"></ key>
<many-t o- many cl ass="JavaC ubMenber 4" col utm="nenber id" uni que="true"/>
</set >
</ cl ass>
</ hi ber nat e- mappi ng>

The JavaClubMember4 (many side of relation) defines thejoin.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C "-//Hi ber nat e/ H ber nate Mappi ng DTD 3. 0/ / EN"
"http://hi bernate. sour cef orge. net/ hi ber nat e- mappi ng-3. 0. dtd* >
<hi ber nat e- mappi ng package="de. |l al i | una. exanpl e3" >
<cl ass nane="JavaCl ubMenber 4" tabl e="tjavacl ubnmenber 4" >
........ snip
<join tabl e="cl ub_nenber" >
<key col um="nenber id" ></key>
<many-t o- one name="cl ub" cl ass="Javad ub4">

<col umm nanme="cl ub_i d" not-nul |l ="true"></col um>
</ many-t o- one>
</joi n>

</cl ass>
</ hi ber nat e- mappi ng>

The resulting tables are:

CREATE TABLE j avacl ub4
(
idint4 NOT NULL
nanme var char (255),
PRI MARY KEY (i d)
)
CREATE TABLE j avacl ubnmenber 4
(
idint4 NOT NULL
nanme var char (255),
PRI MARY KEY (i d)
)
CREATE TABLE cl ub_nenber
(
menber _id int4 NOT NULL
club_id int4 NOT NULL,
PRI MARY KEY (nmenber id),
FOREI GN KEY (nenber i d)
REFERENCES | avacl ubnmenber4 (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON,
FOREI GN KEY (cl ub_id)
REFERENCES j avacl ub4 (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON

IE
Do not forget to set and del ete the relations on both sides.
menber 1. set Cl ub(cl ub) ;

cl ub. get Menber s() . add(nenber 1) ;
menber 2. set Cl ub(cl ub) ;

103

Relation mapping

cl ub. get Menber s() . add(nenber 2) ;

Samples of use:

/* create and set relation */

sessi on. begi nTransacti on();

JavaCl ub4 club = new JavaC ub4("Hi b club");

JavaCl ubMenber 4 nenber1l = new JavaC ubMenber4("Eric");
JavaCl ubMenber 4 nenber2 = new JavaC ubMenber 4(" Peter");
/1 relation is bi-directional => we nust set the relation on both sides
menber 1. set Cl ub(cl ub) ;

menber 2. set Cl ub(cl ub) ;

cl ub. get Menber s() . add(nenber 1) ;

cl ub. get Menber s() . add(nenber 2) ;

/1 no cascade configured so save everything

sessi on. save(cl ub);

sessi on. save(nmenber 1) ;

sessi on. save(nenber 2) ;

[* delete */

/1l we nmust reattach the nenber (our session is closed)

sessi on. bui | dLockRequest (LockOpti ons. NONE) . | ock(cl ubMenber 4) ;
cl ubMenber 4. get Cl ub() . get Menber s() . renmove(cl ubMenber 4) ;

sessi on. del et e(cl ubMenber 4) ;

/* query sanples can be found in the previous sanples */

7.6. m:n

Full source code is provided in package: de.laliluna.relation.many2many Uni-dir ectional

Classes Tables
C] Concertl concertl =
o seriglVersionUID : lang E_E E inta(10)
Bl nLERE name varchar(255)
o hame :5tring
o wisitors : List<Visitorls id=cm¥cer‘t id
x -
concert_visitor
visitors o2 concert_id int4(10)
G Visitorl 3; \FiSitﬂr_id iﬂtﬂll:lﬂ]'
; ; : W
o serialVersianUID : lang i 'tDr_id
o id : Integer i
o name : String visitorl =]
& id int4(10)
name wvarchar{255)

104

Relation mapping

Annotation mapping.

i mport java.util.ArraylList;

i mport java.util.List;

i mport j avax. persistence. CascadeType;

i mport j avax. persistence. Entity;

i mport j avax. persistence. Joi nCol um;

i mport j avax. persi stence. Joi nTabl e;

i mport j avax. persistence. ManyToMany;

......... snip

@ntity

public class Concertl inplenments Serializable {

@manyToMany(cascade = CascadeType. ALL)

@oi nTabl e(nane = "concert_visitor"
joinColums = { @oi nCol um(nanme = "concert _id") },
i nverseJoi nCol ums = { @oi nCol um(name = "visitor_id") })

private List<Visitorl> visitors = new ArrayList<Visitor1>();

@ManyToMany(cascade = CascadeType.ALL) specifies the relation. @JoinTable(name =
"concert_visitor”, specifies the join table. joinColumns specifies which columns reference the Concert
primary key. inverseJoinColumns specifies which columns reference the Visitor primary key. The
Visitor1 class has no relation related annotations.

XML Mapping. Therelation is completely defined on the concert side. | used the tag
f or ei gn- key

only to define the name of the foreign key as | reuse the tables for multiple mapping examples. Not
naming the foreign keys would lead to random key names and double foreign key generation. Usually
you do not need this property.

<hi ber nat e- mappi ng package="de.l aliluna.rel ati on. mrany2nany" >
<cl ass nanme="Concert 1" tabl e="tconcert">
........ snip........
<list nane="visitors" table="visitor_concert" >
<key col um="concert _id" foreign-key="visitor_concert _concert id_fkey"/>
<list-index colum="list _index"></list-index>
<many-to-many class="Visitorl"
forei gn-key="visitor_concert visitor _id fkey">
<col um name="visitor_id" ></colum>
</ many-t o- many>
</list>
</ cl ass>
</ hi ber nat e- mappi ng>

The created tables are shown below:

CREATE TABLE tconcert
(
idint4 NOT NULL
nane var char (255),
PRI MARY KEY (i d)

) ’
CREATE TABLE tvi sitor

105

Relation mapping

idint4 NOT NULL,
nane var char (255),
PRI MARY KEY (i d)
I
CREATE TABLE vi sitor_concert
(
concert _id int4 NOT NULL,
visitor_id int4 NOT NULL,
list_index int4 NOT NULL,
PRI MARY KEY (visitor_id, list_index),
FOREI GN KEY (concert _id)
REFERENCES t concert (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON,
FOREI GN KEY (visitor_id)
REFERENCES tvisitor (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON

I

Samples of use:

[* create and set relation */
Visitorl visitorl = new Visitorl(null, "Edgar");
Concertl concertl = new Concert1(null, "Udo Juergens");

concertl.getVisitors().add(visitorl);
sessi on. save(visitorl);
sessi on. save(concertl);

[* delete */
[/l reattach the visitor to our new session
sessi on. bui | dLockRequest (LockOpti ons. NONE) . | ock(visitorl);
/1 renove visitor fromall concerts
List |ist = session.createQuery(
"from Concertl ¢ where ? in elements(c.visitors)").setEntity(O,
visitorl).list();
for (Iterator iter = list.iterator(); iter.hasNext();)
{
Concertl el enent = (Concertl) iter.next();
el ement . getVisitors().renmove(visitorl);
}
/1 delete visitor
session. del ete(visitorl);

/* select all concerts having a visitor naned Carnen */
List |list = session
. creat eQuery(
"select distinct ¢ fromConcertl c left join c.visitors v "
+"where v.nane |ike 'Carmen% order by c.id").list();

Bi-directional

Classes Tables

106

Relation mapping

® Concert2 concert2 =]
i ; é = :
o seriaVersionUID : long bl E intd4(10)
@ id : Integer name wvarchar(255)
o hame : 5tring |
o visitors ; List=Visitor2 id=concert_id
visitors - congerts concert visitor 2 j
C) Visitor2 32 concert id int4(10)
o serialVersionUID : long B visitor_id int4(10}
o id: Integer) H'f)
: id=visjtor id
o hame : 5tring i =
o concerts : List=Concert2 = visitor2 ;J
2 id int4(10)

name varchar(255)

Annotation mapping.

i mport javax. persistence. CascadeType;

i mport javax. persistence. Entity;

i mport j avax. persi stence. Joi nCol um;

i mport j avax. persi stence. Joi nTabl e;

i mport javax. persistence. ManyToMany;

........ snip

@ntity

public class Concert2 inplenments Serializable {

@manyToMany(cascade = CascadeType. ALL)

@oi nTabl e(nane = "concert _visitor_ 2",
j oi nColums = { @oi nCol um(nanme = "concert _id") },
i nverseJoi nCol ums = { @oi nCol utm(nanme = "visitor_id") })

private List<Visitor2> visitors = new ArrayList<Visitor2>();

@ManyToMany(cascade = CascadeType.ALL) specifies the relation. @JoinTable(name =
"concert_visitor", specifies the join table. joinColumns specifies which columns reference the Concert
primary key. inverseJoinColumns specifies which columns reference the Visitor primary key.

i mport java.util.ArraylList;

i mport java.util.List;

i mport javax. persi stence. CascadeType;
i mport javax. persistence. Entity;

i mport javax. persistence. ManyToMany;
........... snip

@ntity
public class Visitor2 inplenments Serializable {

@manyToMany(mappedBy="vi sitors", cascade=CascadeType. ALL)
private List<Concert2> concerts = new ArraylLi st <Concert2>();

107

Relation mapping

@ManyToMany(mappedBy="visitors", cascade= CascadeType.ALL) specifiesthat the relation is
managed by the property visitors of the Concert class. If both sides manage arelation, they will both
try to write the relation into the database and cause a primary key violation.

XML Mapping.

<hi ber nat e- mappi ng package="de.l aliluna.rel ati on. mrany2nany ">
<cl ass name="Concert 2" tabl e="tconcert">
......... snip
<list nanme="visitors" table="visitor_concert" >
<key col um="concert id" foreign-key="visitor_concert _concert _id_fkey"/>
<list-index colum="1ist_index"></list-index>
<many-to- many class="Visitor2" colum="visitor _id"
forei gn-key="visitor_concert_visitor_id_fkey"></many-to-many>
</list>
</ cl ass>
</ hi ber nat e- mappi ng>

<hi ber nat e- mappi ng package="de.l alil una.rel ati on. nany2nany ">
<cl ass name="Visitor2" table="tvisitor">
......... snip
<l ist nane="concerts" table="visitor_concert" inverse="true">
<key colum="visitor_id" foreign-key="visitor_concert visitor_id fkey"/>
<list-index colum="list _index"></list-index>
<many-t o- many cl ass="Concert2" col um="concert id"
forei gn-key="visitor_concert _concert _id fkey"></nany-to-nany>
</list>
</ cl ass>
</ hi ber nat e- mappi ng>

The created tables are the same as in our previous example. Examples of use can be found in the
provided source code.

There are some important aspects you have to consider: column names If you do not set the foreign
key column name of the visitor on the Concert side,

<many-to-many class="Visitor2" colum="visitor _id"

then there will be a column created, even though the column is already defined on the visitor side with

<l ist name="concerts" table="visitor _concert" inverse="true">
<key col um="visitor_id"

The column name used in thiscaseisELT. | don’'t know why but | only warn you. Foreign-key
Usually you will not need thistag. | needed it because | have two mappings (Concertl, Concert2) to
the same table. When you map two classes to the same table you should name the foreign-keys or

you will get the foreign keys created twice. Inverse="true" Inverse=true defines that this side will not
manage the relation. Y ou must set one side to inverse="true". If not, both sides try to write the relation
into the database and cause a primary key violation. Correct lock usage We set inverse="true" on the
visitor side or mappedBYy on the visitor side without any cascades. As the visitor does not manage the
relation, the deletion of avisitor will not remove the relation. Y ou receive aforeign key exception.
Thereason isthat if you reattach the visitor side, this does not reattach the concert side aswell. The
following code does not work as long as you do not uncomment the explicit lock for the concert.

sessi on. bui | dLockRequest (LockOpti ons. NONE) . | ock(vi sitor);
List list = visitor.getConcerts();
Concert2 concert = (Concert?2) list.iterator().next();

108

Relation mapping

/I sessi on. bui | dLockRequest (LockOpt i ons. NONE) . | ock(concert);
concert.getVisitors().renmove(visitor);
vi sitor. get Concerts().renove(concert);

An aternative approach is to define Cascading on the visitor side.

<list

7.7.1:n:1

nane="concerts" tabl e="visitor_concert"

i nverse="true"

cascade="1| ock" >

Typical examples for this kind of relations are company _ contract _ employee, Order _
Orderposition _ Article. The Hibernate reference uses the term ternary association for this kind of
relation. There are three approaches to map this relation.

Simple way

Use a 1:nrelation and a second n:1 relation. Y ou can use the examples we provided before. M ap-key-

many-to-many

A nice way isaspecial kind of mapping using a map. We will use company _ employee _ contract
as an example. Employee will be used as a key to get the contract from ajava.util.Map. Full source

code is provided in the package: de.laliluna.relation.ternary

Annotation mapping.

java. util
java. util

i mport
i mport
i mport
i mport
i mport
i mport
i mport

@ntity

sni p

. HashMap;
. Map;

j avax. per si st ence. CascadeType;
j avax. persi stence. Entity;
j avax. per si st ence. Joi nCol unm;
j avax. per si st ence. OneToMany;
or g. hi ber nat e. annot at i ons. MapKeyManyToMany;

public class Conpany inpl enents Serializabl e{

@neToMany(cascade=CascadeType. ALL)
@oi nTabl e(nane="conpany_contract",

j 0i nCol ums={ @oi nCol um(nane="conpany_i d")})
@vapKeyManyToMany(j oi nCol unms={ @ oi nCol unm(nane="wor kaholic_id")})
private Map<Wrkaholic, Contract> contracts =

109

Classes Tables
(€] Comp any company_contract j
o setialVersionlID ¢ long B id ink<4)
;) i= Ccompany_i ;
id : Tnteger id=compary_jdee———H T) HH——sllid=contrar
oid ¢ Integear oF contracts_jid int44)
o name : String zﬂ workaholic id int$4)
o contrads @ Map <Workahdlic, Cortract>
1 1 id=workaholic_id
"* "*
a
e} Workaholic €} Contract company El workaholic = contrac
o serialVersionlllD : long @ serialVersionUID long P2 id Nt 25 i inta) 24t
oid : Integer oid nteger name warchar(255) name varchar(255] e wa
o name ! String o name | String —

Relation mapping

new HashMap<Wor kahol i c, Cont ract >() ;

Neither Workaholic, nor Contract have any annotation related to the relation.

The @JoinTableisin fact obsolete, as it describes the default values.

@MapKeyManyToMany(j oinCol umns={ @JoinColumn(name="workaholic_id")}) isin fact the magic
bringing the ternary relation. It defines that the key of the map is referenced by the workaholic_id
column. The key of hour map is workaholic.

XML mapping of Company.

<hi ber nat e- mappi ng package="de.laliluna.rel ation.ternary">
<cl ass nanme="Conpany" tabl e="tconmpany" >
...... snip
<map nanme="contracts">
<key col um="conpany i d"></key>
<map- key- many-t o- many col umm="wor kaholi c_i d" cl ass="Workaholic"/>
<one-to-many cl ass="Contract"/>
</ map>
</ cl ass>
</ hi ber nat e- mappi ng>

Neither Contract nor Workaholic have any relation specific tagsin their mapping file. The created
tables differ dlightly, as the annotation requires ajoin table.

CREATE TABLE t conmpany
(
idint4 NOT NULL
nane var char (255),
PRI MARY KEY (i d)
I
CREATE TABLE twor kahol i c
(
idint4 NOT NULL
nane var char (255),
PRI MARY KEY (i d)
I
Annot ati on ver si on:
CREATE TABLE annot ati on. cont r act
(
idint4 NOT NULL
nane var char (255),
PRI MARY KEY (i d)
I
CREATE TABLE conpany_contract
(
conpany_id int4 NOT NULL
contracts_id int4 NOT NULL
wor kaholic_id int4 NOT NULL,
CONSTRAI NT conpany_contract pkey PRI MARY KEY (conpany_id, workaholic id),
CONSTRAI NT f kc6dl6ad43c5add7b FOREI GN KEY (contracts_id)
REFERENCES contract (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON,
CONSTRAI NT f kc6d16ad48c60df 4a FOREI GN KEY (wor kahol i c_i d)
REFERENCES wor kaholic (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON,
CONSTRAI NT f kc6dl6ad4dadf aaaa FORElI GN KEY (conpany_i d)
REFERENCES conpany (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON,

110

Relation mapping

CONSTRAI NT conpany_contract_contracts_id_key UNI QUE (contracts_id)
)
XM ver si on:
CREATE TABLE tcontract
(
idint4 NOT NULL
nane var char (255),
conpany_id int4,
wor kaholic_id int4,
PRI MARY KEY (i d),
FOREI GN KEY (wor kahol i c_i d)
REFERENCES t wor kaholic (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON,
FOREI GN KEY (conpany_i d)
REFERENCES t conpany (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON

)
Usage samples:

/* create and set relation */
Wor kahol i ¢ wor kahol i cl = new Workaholic("Karl");
Wor kahol i ¢ wor kahol i c2 = new Wbr kahol i c("Susi");

Conpany conpany = new Conpany("expl oiter international");
Contract contractl = new Contract("sl ave 123");

Contract contract2 = new Contract("no holiday");

sessi on. save(wor kahol i c1) ;

sessi on. save(contractl);

sessi on. save(wor kahol i c2) ;

sessi on. save(contract 2);

conpany. get Contract s() . put (wor kaholicl, contractl);
conpany. get Contract s() . put (wor kahol i c2, contract?2);

sessi on. save(conpany) ;

/* find conpany of a contract */
Conpany conpany = (Conpany) session.createQuery
("select ¢ from Conpany c left join c.contracts cr where cr.id = ?“)
.setlnteger(0,id).uniqueResult();

However, there are however some aspects you have to consider. If you change afield of the
Workaholic and try to access the contract directly after your change, you will not be lucky.

Wor kahol i c. set Nane(" Udo") ;
Contract ¢ = (Contract) conpany. get Contracts().get(workaholic);

Keep in mind that you are working with a map. Changing afield affects the hashCode. So do not
change the map key! Component

Y ou can use a component mapping to achieve this. The example for this kind of mapping can be
found in chapter xref:RefComposition13An3A1

7.8. Recursive relation

Recursive relations are possible. Typical example are Trees where each node can have a subtree. We
will create a Tree where each Treeltem knows its parent and its children. Full source codeis provided
in the package: de.laliluna.relation.recursive

111

Relation mapping

Classes Tables

= Treeltem

o serialVersionUID : long

o id: Integer

o parent : Treeltem id=parent id ,5{

o name : String children - parent » treeitem 1=

o children ; Set=Treeltems= j" id intd(10)

name varchar(255)

&8 parent_id int4(10}

Annotation mapping.

j avax.
j avax.
j avax.
j avax.
j avax.

snip

i mport
i mport
i mport
i mport
i mport

@ntity

per si st ence. Cascade
persi stence. Entity;
per si st ence. Joi nCol
per si st ence
per si st ence

Type;

umm;

. ManyToOne;
. OneToMany;

public class Treelteminpl ements Serializable {

@manyToOne

@oi nCol um(nanme="parent _id")
private Treeltem parent;

@neToMany(mappedBy="parent",

private Set<Treeltenm> children =

cascade =

CascadeType. ALL)
new HashSet <Treel ten>();

Therelation isin fact a simple one-to-many relation. @OneToMany(mappedBy="parent", cascade
= CascadeType.ALL) specifies that the relation is managed by the parent property. @ManyToOne

specifies the relation @JoinColumn(name="parent_id") specifies which column isthe foreign key
column to the Treeltem primary key.

XML mapping.

<hi ber nat e- mappi ng package="de. | al i | una. exanpl e6" >
<cl ass nane="Treeltent

snip

t abl e="

<many-t o- one nanme="parent"
<col utmm nane="parent _i d* ></col um>

</ many-t o- one>
<set

nane="chi | dr en"

ttreeitem >

cl ass="Treel t ent

<key col utm="parent _i d"></ key>
<one-to-many cl ass="Treeltem />

</set>
</cl ass>
</ hi ber nat e- mappi ng>

What isinteresting in the mapping isthat | have set a cascade.

cascade="al | , del et e- or phan"

uni que="true"

not - nul | ="f al se"

i nverse="true" cascade="all, del et e-or phan">

Thisis convenient in atwofold sense: First, when you create atree, you only have to save the top
item. All other items will be saved automatically. Second, when you delete an item the whole subtree
will be deleted. The created tableis:

>

112

Relation mapping

CREATE TABLE ttreeitem
(
idint4 NOT NULL
nane var char (255),
parent _id int4,
PRI MARY KEY (id),
FOREI GN KEY (parent _id)
REFERENCES ttreeitem (id) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON

)

Samples of use:
/* create and set relationship */
Treeltem main = new Treelten(null, "main");
Treeltem subl = new Treelten{null, "go sw mm ng");

subl. set Par ent (mai n) ;

mai n. get Chi | dren() . add(subl);

Treeltem subll = new Treeltem(null, "l ake");
subll. set Parent (subl);

subl. get Chi |l dren(). add(subll);

sessi on. save(mai n);

/| cascade will save all the children

[* delete a sub tree */
/I reattach subTree to the new session using |ock
sessi on. bui | dLockRequest (LockOpti ons. NONE) . | ock(subl);
/* renove the children fromthe parent or it will be resaved
when the parent is saved
*/
subl. get Parent (). get Children().renmove(subl);
sessi on. del et e(subl);

Warning: Y ou can create recursive relations with bag or set notation. If you want to use other like an

indexed list, you must create some “dirty" work arounds. Have alook in the Hibernate reference for
more information.

7.9. Typed relation (XML only)

A tutorial reader has two addresses, a billing and a delivery address. Only these address types are
allowed. Full source code is provided in the package: de.laliluna.relation.typed

Classes Tables

113

Relation mapping

C) ReaderAddress tutorialreader j
o selialVersionlID : long gf' id int4(4)
o id : Integer name warchari 2557

o address : Stiing &2 biling_address_id Nt
$'ty il ZP B8 delivery_address_d int4(4)
Billing Ad d Deli d
C] i C] it dhacd id=delivery_address_id id=hilling_address_ic
o serialVersionUID : long o serialVersionlID : long
f\h..l u..1fl\
& e readeraddress j
o serialVersionUID : long e type ¥arehat{ 1
o id 1 Integer i id ink(4)
o name ! String address varchar(2s5)
o bilingaddress : BilingAddress ity warchar(255)
o deliveryAddess : DeliveryAddress
<cl ass name="Tutori al Reader" table="ttutorial reader">
......... snip
<many-t o-one nane="billingAddress" entity-name="Billi ngReader Addr ess" cascade="all"
<col um name="bi | | i ngaddress_f k" ></ col utm>
<formul a> billing' </fornul a>

</ many-t o- one>

<many-to-one nanme="deliveryAddress" entity-nane="DeliveryReader Address" cascade="a

<col um name="del i ver yaddr ess_f k" ></col um>
<f ormul a>' del i very' </ f ormul a>
</ many-t o- one>
</ cl ass>

<cl ass entity-name="Bil | i ngReader Addr ess" nane="Reader Addr ess"
t abl e="treader address" where="type="hilling" "
check="type in('billing',"'delivery')">
<conposite-id nane="id" cl ass="Reader Addressl| d">
<key-property name="reader| d" col unm="reader id"/>
<key- property nanme="type"/>
</ conposite-id>
<property nane="address" type="string"></property>
<property nane="city" type="string"></property>
</ cl ass>
<cl ass entity-nanme="Del i ver yReader Addr ess" nane="Reader Addr ess"
t abl e="treader address" where="type='delivery"'"
check="type in('billing',"'delivery')">
<conposite-id nane="id" cl ass="Reader Addressl| d">
<key- property name="reader|d" col um="reader id"/>
<key- property nane="type"/>
</ conposite-id>
<property nane="address" type="string"></property>
<property nane="city" type="string"></property>
</ cl ass>

The following tables are generated:

CREATE TABLE ttutori al reader

(
idint4 NOT NULL,

114

Relation mapping

nane var char (255),

billingaddress fk int4,

del i veryaddress_fk int4,

CONSTRAI NT ttutorial reader _pkey PRI MARY KEY (i d)

)
CREATE TABLE treader address
(

reader _id int4 NOT NULL,

"type" varchar (255) NOT NULL,

addr ess var char (255),

city varchar (255),

CONSTRAI NT treader address_pkey PRI MARY KEY (reader_id, "type"),

CONSTRAI NT treaderaddress_type check CHECK ("type"::text = 'billing ::text OR "type"::
CONSTRAI NT treaderaddress_type checkl CHECK ("type"::text = "billing ::text OR "type":
)
Samples of use:

[* create and set relation */

Tut ori al Reader reader = new Tutori al Reader ();

reader . set Nane(" Sebasti an");

Reader Address billing = new Reader Addr ess(new Reader Addr essl d(reader
.getld(), ReaderAddresslid.BILLING, "Alte Landstrasse",
"Frankfurt");

Reader Addr ess del i very = new Reader Addr ess(new Reader Addr essl d(r eader
.getld(), ReaderAddressld. DELI VERY), "Neue Landstrasse"
"Frankfurt");

reader.setBi |l | i ngAddress(billing);

reader. set Del i ver yAddr ess(del i very);

sessi on. save(reader);

/* select all billingReader Addresses */
List |ist = session.createQuery("fromBillingReader Address").list();
/* select tutorial reader with billing address in Bad Vil bel */
List |ist = session.createQuery("from Tutori al Reader r where r.billingAddress.city="Bad

7.10. Typed relation (annotation
workaround)

In chapter Section 7.9, “Typed relation (XML only)” we explained atyped relation. This approach

is not possible with annotation mapping. There are two alternatives: First, TutorialReader has two
fields billing_address id, delivery _address id. If you add a billing address to the reader, you set the
type in ReaderAddress manually to “billing". Second, you map BillingAddress, DeliveryAddress and
ReaderAddress as a inheritance structure. This approach is shown below: A tutorial reader has two
addresses, a billing and a delivery address. Only these address types are allowed. Full source codeis
provided in the package: de.laliluna.relation.typed

115

Relation mapping

Classes Tables
C) ReaderAddress tutorialreader j
@ serialVersionllD : long 2 inteH{<)
o id : Integer name warchar{255)

o address : Sing &8 biling_address_id inks{4)
$'ty il ZP B8 delivery_address_d int4(4)
Billing Ad dress Deliver dress
C] 2 C. i id=delivery _address_id id=biling_address_ic
o serialVersionUID : long o serialVersionlID : long
f\h..l I:I..l'/\
& e readeraddress =

o serialVersionUID : long type sachat(31
22 i inksi4)

oid ! Integer e id
o name : String address warchar(255)
o billingAddress 1 BillingAddress city warchar(255]

o deliveryAddess : DeliveryAddress

i mport javax. persi stence. CascadeType;

i mport javax. persistence. Entity;

i mport javax. persistence. Joi nCol um;

i mport javax. persi stence. OneToOne;

...... snip..........

@ntity

public class Tutorial Reader inplenents Serializabl ef

@neToOne(cascade=CascadeType. ALL)
@oi nCol um(nanme="bi | | i ng_address_i d")
private BillingAddress billingAddress;

@neToOne(cascade=CascadeType. ALL)
@oi nCol um(nane="del i very_address_i d")
private DeliveryAddress deliveryAddress;

The ReaderAddress includes all common properties:

i mport java.io.Serializable;

i mport javax. persi stence. Di scri nm nat or Col umm;
i mport javax. persistence. Di scrim nator Type;

i mport javax. persistence. Entity;

i mport j avax. persi stence. Gener at edVal ue;

i mport j avax. persi stence. Generati onType;

i mport javax. persi stence. |d;

i mport javax. persistence. | nheritance;

i mport javax. persistence. | nheritanceType;

i mport javax. persi stence. SequenceCGener at or

@ntity

@ nheritance(strategy=IlnheritanceType. SI NGLE _TABLE)

@i scri m nat or Col um(nane="t ype", di scri m nat or Type=Di scri m nat or Type. STRI NG
public class Reader Address inplenents Serializable {

@d

@equenceCener at or (name = "reader address_seq",
sequenceNane = "readeraddress_id_seq")

@cener at edVal ue(strat egy=CGener ati onType. SEQUENCE

116

Relation mapping

gener at or ="r eader addr ess_seq")
private |Integer id;

private String address;
private String city;

@I nheritance(strategy=InheritanceType.SINGLE_TABLE) defines the inheritance
strategy. All addresses will be kept in one table. The different addresses can be identified
by adiscriminator column. A discriminator column holds the type of the address.
@Discriminator Column(name="type" discriminator Type= Discriminator Type.STRING)

Deliveryaddress and BillingAddress are fairly short.

@ntity
public class BillingAddress extends Reader Address ({
public BillingAddress() {
super () ;

}

public BillingAddress(lnteger id, String address, String city) {
super (i d, address, city);

}

private static final |ong serial VersionU D = 3313063223421102585L

}

i nport | avax. persi stence. Entity;

@ntity
public class DeliveryAddress extends Reader Address {
private static final |ong serial VersionU D = 8902940839248062796L
public DeliveryAddress(){
super () ;
}
public DeliveryAddress(Integer id, String address, String city) {
super (i d, address, city);
}
}

The following tables are generated:

CREATE TABLE ttutori al reader
(
idint4 NOT NULL
nanme var char (255),
billingaddress fk int4,
del i veryaddress _fk int4,
PRI MARY KEY (id),
FOREI GN KEY (billing_address_id)
REFERENCES annot at i on. reader address (i d) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON,
FOREI GN KEY (delivery address_id)
REFERENCES annot at i on. reader address (i d) MATCH SI MPLE
ON UPDATE NO ACTI ON ON DELETE NO ACTI ON
I
CREATE TABLE reader addr ess
(
“"type" varchar(31) NOT NULL,
idint4 NOT NULL
addr ess var char (255),

117

Relation mapping

city varchar (255),
PRI MARY KEY (i d)

)
Samples of use:
/* create and set relation */

Tut ori al Reader reader = new Tutori al Reader () ;
reader . set Nane(" Sebasti an");

BillingAddress billing = new BillingAddress(null, "Alte Landstrasse",
"Frankfurt");
Del i ver yAddr ess delivery = new DeliveryAddress(null, "Neue Landstrasse",

"Frankfurt");
reader. setBi ||l i ngAddress(billing);
reader. set Del i ver yAddr ess(del i very);
sessi on. save(reader);

/* select all billing addresses */

List |ist = session.createQuery("fromBillingAddress").list();
/* select tutorial reader with billing address in Frankfurt */
Li st list = session.createQuery("from Tutori al Reader r where

r.billingAddress. address="'Alte Landstrasse'").list();

118

Chapter 8. Components = Composition
mapping

Components can be used to implement the object-oriented concept of composition.

Thiskind of relation can of course also be designed using arelation to an entity. So the question is,
how to choose between entity relations versus and composition?

Let'shavealook at afirst example and then we will work out the criteria to choose the correct
approach.

A person has an address component.

Person class.

i mport j avax. persistence.Entity;
@ntity

public class Person{

private Address address;

Addressclass.
i mport j avax. persi stence. Enbeddabl e;
@nbeddabl e

public class Address {
private String street;

Collections of components are supported as well. A person might have a collection of former
addresses.

Per son class.
i mport javax. persistence.Entity;
@ntity
public class Person{
private Address address;
@l enent Col | ecti on
@col | ecti onTabl e(name = "person_fornmer_addresses",

joi nCol ums = @oi nCol um(nane = "person_fk"))
privat e Set <Address> former Addresses = new HashSet <Addr ess>();

8.1. Composition versus entity relations

There are two characteristics of components:
» Dependent lifecycle

 Shared references are not supported

119

Components =
Composition mapping

If an object has a dependent lifecycle, it will be deleted when the parent object is del eted.
Some examples:

 Shop order and order position

* Person and address

* Product and product details

Some examples for independent lifecycles:

» Customer and key accounter

* Order and article

» Football team and player.

The last case could be discussed. If the team needs to be shut down, do you really want to keep the
player in the league?

A shared referenceis acase of two entities having arelation to the same entity instance. For example
two shop products might have a reference to the same shop category.

Recommendation

If aclass does not need to support shared references and has a dependent lifecycle, you
should map it as component, as you get the saving, updating and deleting for free.

Keep in mind
Y ou can aways live and develop without using components. It is ajust cleaner mapping.

Finally, using Cascade.ALL and orphan removal you can achieve component like
behaviour with entities.

The Hibernate Reference uses the term entity relation but | believe that the term entity agregation is
more precise. When speaking about composition the Hiber nate Reference uses component collections.
Alternatively you may speak about composition .

8.2. Composed class in one table

Full source code is provided in the package: de.laliluna.component.simple

120

Components =
Composition mapping

Classes Tables
Soup i soup by
-id : Integer +id intd
-name : S5tring name varchar(255)
-taste : Taste description varchar(255)
-recipe : Recipe ingredients varchar(255)
evaluation varchar(255)
tast
:;": 1 > st firstimpression warchar255)
soup W/ L »
Taste
~firstimpression : String
,-E{tp@raluatinn : String
]
Ky
Recipe

-ingredients : 5tring
~description : String
-50up : Soup

In this example a soup has two components: recipe and taste. All information is kept in one table.
We declare Recipe and Taste as simple properties. In their mapping we have to define that they are
embeddable.

Annotation mapping.

i mport java.io.Serializable;

i mport j avax.persistence.Entity;

....... snip

@ntity

public class Soup inplenments Serializabl e{

private Taste taste;
private Recipe recipe;

Asyou can see there are no @Embedded annotations. We only need them, if we want to overwrite the
default values.

i mport java.io.Serializable;
i nport j avax. persi stence. Enbeddabl e;
i nport org. hi bernat e. annot ati ons. Parent;

@nbeddabl e
public class Recipe inplenments Serializable {
private String ingredients;

private String description;

@Par ent
private Soup soup;

@Embeddabl e specifies that this class can be embedded into other entities. @Parent defines that this
is areference back to the embedding class. Thisisthe soup in our case.

i mport java.io.Serializable;

121

Components =
Composition mapping

i mport j avax. persi st ence. Enbeddabl e;

@nbeddabl e
public class Taste inplements Serializable {
private String firstlnpression

private String eval uation

XML mapping.

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C "-// Hi bernat e/ Hi ber nat e Mappi ng DID 3. 0/ / EN'
"http://hibernate. sourcef orge. net/ hi ber nat e- mappi ng-3. 0. dtd" >
<hi ber nat e- mappi ng package="de. | al i | una. conponent . si npl e" >
<cl ass nane="Soup" tabl e="tsoup" >
........... SNip
<conmponent nane="taste" class="Taste">
<property nane="firstlnpression" colum="first _inpression"></property>
<property nane="eval uati on" col um="eval uati on"></ property>
</ conponent >

<conmponent nane="reci pe" cl ass="Reci pe" uni que="true">
<par ent nanme="soup"/>
<property nane="ingredi ents" col um="i ngredi ents"></property>
<property nane="description" col um="descri ption"></property>
</ conponent >
</ cl ass>
</ hi ber nat e- mappi ng>

The unique="true" causes a unique key for the database table. Ingredients and description are of
course unigue. If you need to access the soup from the recipe, than you can add a parent tag.

<parent nanme="soup"/>
In this case your recipe class must provide a soup attribute.

Samples of use:

/* create a soup */

Soup soup = new Soup(" Veget abl e soup");

Taste taste = new Taste();

t ast e. set Eval uati on("best eaten so far");
taste.setFirstlnpression("incredible");

soup. set Tast e(taste);

Reci pe reci pe = new Reci pe();

reci pe. set Description("wash and cut veget abl es\ nadd wat er\ ncook");
reci pe. setl ngredi ents("choice of vegetables you like");

soup. set Reci pe(reci pe);

sessi on. save(soup);

/* sel ect soups where attribute eval uati on of conponent taste

is ,best eaten so far“ */

Li st <Soup> |ist = session.createQuery("from Soup s where s.taste.evaluation = ?")
.setString(0, "best eaten so far")
dist();

122

Components =
Composition mapping

8.3. Composition as set of many classes

Full source code is provided in the package: de.laliluna.component.collection2

Classes Tables
Pizza -
-id : Integer r’ pizza -\I
-name : String +id intd Mullable = false
-ingredients ; Set<Ingredient> = new HashSet<Ingredient> () name varchar(25%) MNullable = true
T
-ingradienty 1 T
. fke d59b76b1267bade |
Ingredient ?
::ﬁ;:: ﬁlt;zn; i pizza_ingredients A
#pizza_id intd Nullable = false
name varchari255) Mullable = true

Annotation mapping.

i mport java.util.HashSet;

i mport java.util. Set;

i mport javax. persi stence. *;
....... snip........
@ntity

public class Pizza {

[l ... snip ..

@l enent Col | ecti on
@col | ecti onTabl e(nane="pi zza_i ngredi ents", joinColums =
@oi nCol um(nane="pi zza_i d"))
private Set<I|ngredient> ingredients = new HashSet <l ngredi ent >();

@ElementCollection defines the component mapping. @JoinTable is optional. It specifies the name
of the ingredient table and the foreign key column.

Deprecated Hiber nate extension

Before Java Persistence 2 only Hibernate supported this kind of mapping. The annotation
was named dlightly different @CollectionOfElements and is now deprecated.

i mport org. hi bernat e. annot ati ons. Parent;
i mport javax. persi st ence. Enbeddabl e;

@nbeddabl e
public class Ingredient {

private String nane;

@ar ent
private Pizza client;

@Parent specifies the property to be a reference back to the embedding class, i.e. PizzaClient in our
case.

123

Components =
Composition mapping

XML mapping.

<hi ber nat e- mappi ng package="de. | al i | una. conponent. col | ecti on2">
<cl ass nanme="Pi zza" table="tclient" >
<l-- .. snip .. ->
<set nane="ingredi ents" tabl e="pizza_ingredients">
<key col um="cl i ent _f k" ></ key>
<conposi te-el enment class="de.lalil una. component.collection2.lngredient" >
<property name="nane"/>
</ conposi t e- el enent >
</set >
</ cl ass>
</ hi ber nat e- mappi ng>

Samples of use:

/* create and set component */

Pi zza pizza = new Pi zza(" Speci al e");

I ngr edi ent cheese = new I ngredi ent (" Cheese");

I ngredi ent salam = new Ingredient("Salam");

| ngr edi ent tomat oes = new | ngredi ent (" Tonat oes") ;
pi zza. get | ngredi ent s(). add(sal am) ;

pi zza. get | ngredi ent s(). add(cheese) ;

pi zza. get | ngredi ent s(). add(t omat oes) ;

sessi on. save(pi zza) ;

/* sel ect pizza clients having an address in London */
Li st<PizzaCient> |list = session
. creat eQuery(
"fromPizza c left join c.ingredients a where a.nane = :ingr")
.setString("ingr", "Tomato").list();

8.4. Equals implementation

If you try out this mapping, you will be surprised about the amount of queries generated if you update
or delete an element of the collection.

If your pizza has 3 ingredients and you will delete one, you will find the following queries.

del ete from Pi zza_i ngredi ents where Pizza id=? and nane=?
del ete from Pi zza_i ngredi ents where Pizza id=? and nane=?
del ete from Pi zza_i ngredi ents where Pizza id=? and nane=?
insert into Pizza_ ingredients (Pizza_id, nanme) values (?, ?)
insert into Pizza_ ingredients (Pizza_id, nanme) values (?, ?)

Hibernate is deleting all ingredients and re-inserts the 2 which persist. The reason issimple. If you
do not implement equals and hashcode, Hibernate has no way to detect which element you have
removed.

Once you have added an equals method like the following, removing an ingredient will only cause a
single delete.

Extract of Ingredient class.

@verride
publ i ¢ bool ean equal s(Obj ect 0) {
if (this == 0) return true

if (!(o instanceof Ingredient)) return fal se;

124

Components =
Composition mapping

I ngredient that = (Ingredient) o;
if (!nane.equal s(that.getNanme())) return false;
return true;

}
@verride

public int hashCode() {
return name. hashCode();
}

Y ou need to take greatest care, when implementing equals and hashCode. Hibernate has additional

requirements. Please have alook in the chapter Equals and HashCode Section 6.6, “ Equals and
Hashcode”.

8.5. Composition as list of many classes

Full source code is provided in the package: de.laliluna.component.collectionl

In this example the component will have a defined order, which is guarantied by adding a position
column to the database.

Classes Tables
. Hedgehog ' hedgehog)
id Sininger +id int4 Nullable = false
-name : 5tring B bl
~addresses : List<WinterAddress> = new ArrayList<WinterAddress:= () name wvarchar(255) Nullable = true
addresses
x fkE8eSefEc9edflasa
WinterAddress
—name : 5tring i hedgehog_winter_addresses
-description : String +#hedgehog_id intd Nullable = false
description varchar(255) Mullable = true
name varchar(255) Mullable = true
+ list_index intd Mullable = false

A hedgehog which is successful in life has of course many winter addresses.

Annotation mapping.

i mport java.util.ArraylList;

i mport java.util.List;

i mport javax. persistence. Entity;

i mport javax. persistence. Joi nCol um;

i mport org. hi bernate. annot ati ons. Col | ecti onCf El enent s;
i mport org. hi bernate. annot ati ons. | ndexCol umm;

@ntity
public class Hedgehog {

@l enent Col | ecti on

@col | ecti onTabl e(nane = "hedgehog_w nt er _addr esses",
j 0i nCol ums = @oi nCol um(nane = "hedgehog id"))
@ der Col um(nane = "list_index")
/1 @ndexCol um(nane = "list_index")

private List<WnterAddress> addresses = new ArrayLi st <W nt er Addr ess>() ;

125

Components =
Composition mapping

@ElementCollection defines the component mapping. @CollectionTable is optional. It specifies
the name of the table and the foreign key column. _@IndexColumn (Hibernate API) is optional and
defines thisrelation as an indexed relation.

I ndexColumn

Hibernate has aways offered the @IndexColumn but since JPA 2 thereis a JPA aternative
aswell. @Order Column

The WinterAddress should be made embeddable. If you do not make it embeddable, then the class
will be serialized and written to ablob field. Y ou can still read and write the objects, but they are not
selectable in the database.

i mport java.io.Serializable;
i mport j avax. persi st ence. Enbeddabl e;

@nbeddabl e
public class WnterAddress inplements Serializabl ef
private String nane;

private String description;

XML mapping.

<hi ber nat e- mappi ng package="de. |l al i | una. conponent 2" >
<cl ass nane="Hedgehog" t abl e="t hedgehog" >

....... snip

<li st name="addresses" tabl e="tw nteraddress">
<key col um="hedgehog i d" not-null ="true"></key>
<list-index colum="l|ist_index"></l|ist-index>

<conposi te-el ement cl ass="W nt er Addr ess" >
<property nane="nanme" type="string"></property>
<property nane="description" type="string"></property>
</ conposi t e- el enent >
</list>
</ cl ass>
</ hi ber nat e- mappi ng>

Samples of use:

[* create and set conponents */

Hedgehog hedgehog = new Hedgehog("Peter");

W nt er Addr ess addressl = new W nt er Addr ess("stack of wood",
"close to the apple tree");

W nt er Addr ess address2 = new W nt er Address("shelter"
"ol d shelter of the nei ghbour");

hedgehog. get Addr esses() . add(addr ess1);

hedgehog. get Addr esses() . add(addr ess?2) ;

sessi on. save(hedgehog) ;

/* sel ect hedhehogs having a address naned ,first class hotel “*/
Li st <Hedgehog> | i st = session. creat eQuery
("from Hedgehog h left join h.addresses a where a.nane = ?")
.setString(0, "first class hotel™).list();

126

Components =
Composition mapping

IndexColumn and equals implementation

Using a Set required implementation of equals and hashcode. Using an index column this
is not necessary. Hibernate uses the index column to identify an element of the collection.

Using a List and omitting the index column will always lead to the inefficient deletes and
reinserts when updating an element. Implementing equals does not help with List.

8.6. Advanced detalils

Changing column names

By default, the column names are taken from the component. For the recipe examples a column
firstimpression will be added to the recipe table. If you want to change column names of a component
in an entity, you can use @AttributeOverrides in the annotation mapping, have alook at the Sheep
and Pullover example in the same package as the previous example.

Sheep class.

@ntity
public class Sheep {

@nbedded

/I we would like the color field of pullover to be mapped to a different

/1 col um

@\ttributeOverride(name = "color", columm = @ol um(nane = "pul |l over _col um"))
private Pullover pullover;

Querying components

Y ou cannot load a component by id or write aquery like select a from Address a, but it is still possible
to query alist of all addresses. Y ou just have to make use of the owning entity.

Li st <Addr ess> addresses = session. createQuery
("sel ect p.address from Person p")
dist();

8.7. Composition 1:n:1

Full source code is provided in the package: de.laliluna.component.ternary A typical relation for this
kind of mapping is: Offer _ OfferLine _ Offerltem

127

Components =
Composition mapping

Classes Tables
Offer
-id : Integer +id intd
-offerLines : Set<OfferLine
i :
offer Toffertines (" offer offerlines
*:’@\f +#offer_id intd
£ # offeritem_id intd
OfferLine + guantity intd
—quantity - int
-offerltem ; Offerltem
-offer : Offer
g
o i offeritem)
offerltem L‘Fid intd J
1 name wvarchar255)
W
Offeritem
-id ! Integer

-name : 5tring

Of course you could map this without using components asasimple 1:n + 1:1 relation. Y ou may
choose the component mapping if your n-classis not an entity that you will deal with directly. Y our
application logic will probably always access an offerLine by selecting the offer first. In this case

you will probably not need an entity offerLine. In case of arelation Customer _ Order _ Invoice
would be probably better mapped as 1:n + 1:1 as you will probably access all three entities. Equals
and hashcode As aready explained in example component3 you must implement equals and hashcode
when you want to use a set. Implementing is not at all easy, so you might consider to prefer list, map,
idbag for this kind of mapping. Nevertheless, | used a set here.

Annotation mapping.

i mport java.io.Serializable;

i mport java.util.HashSet;

i mport java.util.lterator;

i mport java.util. Set;

i mport javax. persistence. Joi nCol um;

i mport org. hi bernate. annot ati ons. Col | ecti onCf El enent s;
i mport javax. persistence. Entity;

...... snip........

@ntity
@equenceCenerator(nane = "of fer _seq", sequenceNane = "offer_id _seq")
public class O fer inplenments Serializable {

@l enent Col | ecti on
@col | ecti onTabl e(nane="offer _Iine", joinColums = @oi nCol um(nanme = "offer_id"))
private Set<OfferLine> offerLi nes = new HashSet <O f er Li ne>() ;

i mport java.io.Serializable;
i mport j avax. persi stence. Enbeddabl e;
i mport j avax. persi stence. Joi nCol umm;
i mport j avax. persi stence. OneToOne;
i mport org. hi bernat e. annot ati ons. Parent;

128

Components =
Composition mapping

@nbeddabl e // class can be enbedded i nto other cl asses
public class OferLine inplements Serializable{

@neToOne // one to one relation
@oi nCol um(nanme="offeritem.id") // optional colum nane of the foreign key
private Oferltemofferltem

@arent // offer is specified as reference back to the enbeddi ng cl ass
private Ofer offer;

The OfferLine needs to be embeddable and has a relation to Offerltem. In addition, | added a relation
back to the parent class (Offer). Offerltem has no component specific annotations

XML mapping.

<hi ber nat e- mappi ng package="de. |l al i | una. conponent.ternary " >
<cl ass name="COffer" table="toffer" >
......... snip.......
<set nane="offerLines" table="toffer line" >
<key col um="of fer fk" ></key>
<conposite-el enent class="OferlLine" >
<parent name="offer"/>
<property nane="quantity" type="integer" ></property>
<many-to-one nanme="offerlten class="COferlten >
<col um name="item fk"></col utm>
</ many-t o- one>
</ conposi t e- el enent >
</set >
</ cl ass>
</ hi ber nat e- mappi ng>

Offerltem has no component related tags. It is a simple mapping.

Samples of use:

[* create */
Oferltemiteml = new Oferltenm(null, "Red flowers");
sessi on. save(iteml);

Ofer offer = new Ofer();
OferLine linel = new O ferLine();
linel.setQuantity(5);
linel.setOfferlten(iteml);

of fer.get O ferLines().add(linel);
sessi on. save(offer);

/* select offers where quantity of red flowers are 5 */
List<Ofer> |list = session.createQuery(
"fromOfer o left join o.offerLines | where |.quantity = :q " +
"and | .offerltem name = :n")
.setlnteger("q", 5).setString("n", "Red flowers").list();

8.8. Not included mappings

| decided not to show the use of some more complex mappings as | want to focus on the most
common tasks. If you are interested in this mappings have alook at the test cases coming with the
Hibernate download.

129

Components =
Composition mapping

e composite-map-key

* dynamic components

130

Chapter 9. Inheritance

We will explore mapping Javainheritance structures to the database.

9.1. Use Case

Our use case is about mice. There is a parent class Mouse and two sub classes LibraryMouse,
KitchenMouse. As the name indicates one livesin alibrary and the other one in the kitchen.

Mouse
-id
-name
KitchenMouse LibraryMous e
~favouriteCheese ~favouriteBook

Hibernate allows to map inheritance structures to database table and it provides a number of
approachesto do this. Not all approaches are support by XML mappings and not all by annotations.
Source code for the samples can be found in the package de.laliluna.inheritance in the project
mapping-examples-xml and mapping-exampl es-annotation.

9.2. Overview on mapping approaches

There are five approaches to map class hierarchies. | will give you a quick overview before the next
chapters describes all the details.

Mapped super class

If the parent class is not an entity but only provides some common attributes and methods, then you
have to annotate it with @M appedSuperclass. Once it is annotated, the attributes will be stored in the
tables of the sub classes LibraryMouse and KitchenMouse.

@mppedSuper cl ass

public class Muse {

Y ou cannot have arelation from a classto a Mouse asit is no entity but you are still able to query for
the Mouse class.

sessi on. creat eQuery("select mfrom Mouse m').list();

Thiswill sent two queries one for KitchenMouse and one for the LibraryMouse table. Then Hibernate
will add both results to the result list.

By the way you can query java.lang.Object as well.

131

Inheritance

i LibraryMouse ™ i KitchenMouse
+id intd +id intd
rame varchar(255) name varchar(255)
favouriteBook wvarchar(255) favouriteCheese wvarchar(255)
Singletable

Package : ...inheritance.singletable

/1 Annot ati on

@ nheritance(

st rat egy=I nheritanceType. S| NGLE_TABLE)

@i scri m nat or Col unm(nane="nouse_t ype", di scri m nat or Type=
Di scri m nat or Type. STRI NG

[l XM
<subcl ass name="Ki t chenMbuse" di scri m nat or-val ue="kitchen">

Onetable for the class hierarchy. A column identifies the type of atable row. In the picture below it is
the type column.

i Mouse ™
+id intd
type varchar(255)
name varchar{255)
favouriteCheese warchar(255)
favouriteB ook varchar(255)

Queries are very simple without any needs for joins or unions. Performance is good: Only one
statement needed for inserts and updates. No joins when datais selected All individual attributes of a
subclass must allow null values, as other subclasses will not set them.

Joined subclass

Package: ...inheritance.joined

/1 Annotation
@ nheritance(strategy=Il nheritanceType. JO NED)

/1 XM
<j oi ned- subcl ass nanme="Li braryMuse" tabl e="Li braryMuse">

Onetable for each class of the hierarchy including parent and subclasses.

132

Inheritance

i Mouse ™
----- Fl+#id intd l-====
name wvarchar(2...

-
i
4 LibraryMouse N 4 KitchenMouse
+mouse_fk intd +#mouse_rk int4
favouriteBook warchar{255) favouriteCheese wvarchar(25...

Common fields in common table, individual fieldsin subclass table. Two statements are needed for
inserts or updates. Join needed when parent or subclassis selected.

Mixing Joined subclass with a discriminator
XML only!

Package: ...inheritance.joineddiscriminator

<subcl ass nane="Li braryMuse" discri m nator-val ue="Li braryMuse" >
<join tabl e="Li braryMuse">

Onetable for each class of the hierarchy including parent and subclasses. Discriminator column to
identify object type

i Mouse
R e#id imed ===
I name wvarchar(255)
: type wvarchar(25%)
I
I

-
i
LibraryMouse ™ i KitchenMouse
+mouse_fk intd +#mouse_fk intd
favouriteBook warchar(255) favouriteCheese warchar(25...

Queries are not always easy when relations have to be queried. Common fields in common table,
individual fieldsin subclass table. Two statements needed for inserts and updates. Join needed when
parent or subclassis selected but join is faster as compared to joined-subclass.

Table per class

Package: ...inheritance.union (XML) and .inheritance.tableperclass (annotation)

/1 Annot ati on
@ntity
@ nheritance(strategy = InheritanceType. TABLE PER CLASS)

/1 XM
<uni on- subcl ass name="G r| Group" table="tgirl group">

133

Inheritance

Onetable for each subclass and optional for the parent class.

4 Mouse B

+id intd
name wvarchar{255)

LibraryMouse N 4 KitchenMouse
+id intd +id intd
name varchar(255) name varchar(255)
favouriteBook warchar(255) favouriteCheese warchar(255)

A sub classinstance is stored in one table. Only one query needed for inserts. Big union including all
subclasses when parent is called. No union when subclassis called. Id generator limitations foreign
key relations are not possible

XML includes

XML only Package: inheritance.xmlinclude

<cl ass nane="A dBoyG oup" table= "tol dboygroup"> \&al | properties;

Onetable for each subclass . XML inclusion is used

toldmusicfan = toldhardrock =]
o id int4(4) &2 id int4(4)

n_ame warchar(255 n_ame varchar(Z55)
destroyedguitars intH4)

id=rnusicfan_id

oldmusicfan_musicgroup =
22 musicfan_id int4{4) toldboygroup =
musicgroup_class varchar{255) &8 id ink4(4)
musicgroup_id ink4{4) n_ame warchat| 255)
id ink4{4) cryinggroupies boal(1)

Relations to parent class are not easy to query. Only one query needed for inserts. Query to parent
class needs one select for each subclass.

9.3. Single Table

The first approach will only use one table. From the class diagram below you can see that a plant
has some fields and that each subclass adds afield, for example flower adds the color. Thisresults
can be found in one big table holding all the fields. The disadvantage of this approach is that
fields in the subclasses Tree and Flower must accept null values. A flower will not set the field
has fruits. So has fruits must allow null values. Full source code is provided in the package:
delaliluna.inheritance.singletable

134

Inheritance

- Mouse)
+id intd
type varchar{255)
name varchar{255)
favouriteCheese wvarchar(255%)
favouriteBook varchar(255)
L d

Hibernate distinguishes the different classes using a discriminator column. When the column type
contains KitchenMouse then the row will be treated as KitchenM ouse.

Annotation mapping.

i mport j avax. persi stence. Di scri m nat or Col umm;
i mport javax. persistence. Di scrim nator Type;

i mport j avax. persistence. Entity;

i mport javax. persistence. | nheritance;

i mport javax. persistence. | nheritanceType;

.......... snip.......

@ntity

@ nheritance(strategy = I nheritanceType. SI NGLE TABLE)
@i scri m nat or Col um(nane = "type")

public class Muse {
@d @=ener at edVal ue
private |Integer id;
private String nane;

The LibraryMouse and KitchenMouse class are fairly smple. They inherit from Mouse and add only
their specific attributes.

@ntity
public class KitchenMbuse extends Mouse{

private String favouriteCheese;

Optionally you can define a different discriminator value. By default the class name is used.

@ntity
@i scrim natorVal ue("I nm'")
public class LibraryMuse extends Muse{

private String favouriteBook;

Other classes can have relations to the subclass (Flower) as well as to the parent class (Plant).

i mport java.util.HashSet;

i mport java.util. Set;

i mport javax. persi stence. CascadeType;
i mport j avax. persistence. Entity;

i mport javax. persistence. Joi nCol um;
i mport j avax. persi stence. OneToMany;
........ snip

135

Inheritance

public class House inplements Serializable {

snip
@neToMany(cascade = CascadeType. ALL)
@oi nCol um(name = "garden_pl ant _id")

private Set<Mouse> all M ce = new HashSet <Mbuse>();

@neToMany(cascade = CascadeType. ALL)
@oi nCol um(name = "garden_fl ower _id")
private Set<KitchenMuse> kitchenM ce = new HashSet <Ki t chenMbuse>() ;

@I nheritance(strategy=InheritanceType.SINGLE_TABLE)
Required Is set in the parent class Defines the inheritance strategy.

@Discriminator Column(name="plant_type" ,discriminator Type=Discriminator Type.STRING)
Optional Is set in the parent class Can be used to explicitly specify a discriminator column

@Discriminator Value(value=" kitchen_mouse")
Optional Can be set in the parent and subclasses Can be used to explicitly define what is written
into the discriminator column for the specific class.

Discriminator Type.CHAR | INTEGER | .STRING
Optional Is set in the parent class Is part of the discriminator column definition. Defines which
type the discriminator column has.

XML mapping.

<hi ber nat e- mappi ng package="de. |l al il una.inheritance. singl etable" >
<cl ass name="Mouse" >
......... snip.......
<di scri m nator col um="pl ant _type" type="string"></di scri m nat or>
<subcl ass name="Ki t chenMouse" di scri m nator-val ue="Kit chenMbuse" >
<property nane="favouriteCheese" />
</ subcl ass>
<subcl ass nane="Li braryMuse" discrim nator-val ue="Li braryMuse">
<property nane="favouriteBook"/>
</ subcl ass>
</ cl ass>
</ hi ber nat e- mappi ng>

Other classes can have relations to the subclass (KitchenMouse) as well as to the parent class
(Mouse).

<hi ber nat e- mappi ng package="de. |l al il una.inheritance. singl etable" >
<cl ass nanme="House" >
...... snip
<set nane="all M ce" table="house npuse">
<key col um="house i d"></key>
<many-t o- many cl ass="Mouse" >
<col um nanme="nmuse_i d"></col um>
</ many-t o- many>
</set >

<set nane="kitchenM ce" tabl e="house kitchen_m ce" >
<key col um="house i d"></key>
<many-t o- many cl ass="Kit chenMuse" >
<col um nanme="kitchen_nouse i d"></col um>

136

Inheritance

</ many-t o- many>
</set >
</ cl ass>
</ hi ber nat e- mappi ng>

Samples of use:

/* create and set relation */

House house = new House();

Mouse bea = new Mouse("Bea");

house. get M ce() . add(bea) ;

Ki t chenMbuse john = new Kit chenMouse("John");
house. get M ce() . add(j ohn);

Li braryMouse tim = new Li braryMuse("Tini);
house. get M ce() . add(ti m;

sessi on. save(bea) ;

sessi on. save(j ohn);

sessi on. save(tim;

sessi on. save(house) ;

/* get all kind of mce*/
Li st <Mouse> result = session.createQuery("select mfrom Muse ni)
dist();

/* select all kitchen mce who |i ke Gauda cheese blue flowers */

Li st <Ki t chenMbuse result = session
.createQuery("select mfromKitchenMouse m where mfavouriteCheese = Gauda'")
dist();

/* select all mice of type LibraryMuse */
Li st <Li braryMouse> result = session

.createQuery("select mfrom Mouse mwhere type(m = LibraryMuse ")
dist();

9.4. Joined Inheritance

Full source code is provided in the package: de.laliluna.inheritance.joined

4 Mouse N
————— Hl+#id intd ===
name warchar(2...

-
i
i LibraryMouse My i KitchenMouse
+mouse_fk int4 +#mouse_fk int4
favouriteBook warchar(255) favouriteCheese wvarchar(25...

The parent class holding common attributes (id, name) is saved in the mouse table. The individual
tables share the same primary key with the parent class table.

This approach is fully normalized. We do not need a discriminator column. Hibernate works out the
type by clever SQL queries.

137

Inheritance

Annotation mapping.

i mport javax. persistence. Entity;

i mport javax. persistence. | nheritance;

i mport javax. persistence. | nheritanceType;
....... sni p

@ntity
@ nheritance(strategy = I nheritanceType.JO NED)
public class Muse {

@d @zenerat edVal ue

private |nteger id;

private String nane;

@I nheritance(strategy = InheritanceType.JOINED) specifies the inheritance strategy. The subclasses
do not have any inheritance related annotations.

@ntity
public class KitchenMbuse extends Mouse{

private String favouriteCheese;

@ntity
public class LibraryMuse extends Muse{

private String favouriteBook

XML mapping.

<hi ber nat e- mappi ng package="de. | aliluna.inheritance.joi ned">
<cl ass nanme="Mouse" >
....... SNip ...
<j oi ned-subcl ass name="Kit chenMbuse" >
<key col um="rnouse_i d"></key>
<property nane="favouriteBook" col um="favourite_ book"/>
</ j oi ned- subcl ass>
<j oi ned-subcl ass name="Li braryMuse" table="Iibrary nouse">
<key col um="rnouse_i d"></key>
<property nane="favouriteCheese" col um="favourite_ cheese"/>
</ j oi ned- subcl ass>
</ cl ass>
</ hi ber nat e- mappi ng>

To be aware of possible performance issues, | will explain you the behaviour of this mapping. When
we insert an object of the subclass LibraryMouse, Hibernate will generate two inserts. Common
attributes are saved in the table mouse. Subclass specific attributes are saved in the table of the
subclass.

insert into Mouse (nane, id) values (?, ?)
insert into LibraryMuse (favouriteBook, id) values (?, ?)

When we select data from a subclass, we always need ajoin.

sessi on. creat eQuery("from Li braryMouse m").list();

Resulting SQL query:

138

Inheritance

sel ect

kitchennmouO_.id as id5_,

kit chennouO_1 . nane as name5b_,

kit chennouO_. favouriteCheese as favouritl 6
from

Ki t chenMbuse kit chenmouO _
i nner join

Mouse kitchennouO_1

on kitchenmouO_.id=kitchennouO_1 .id

Selecting the parent class will result in abig join of all subclasses.

sessi on. creat eQuery("from Mouse ").list();
Resulting SQL query:

sel ect
mouse0 .id as id5_,
mouseO_. nanme as nanmeb_,
nouse0 1 .favouriteCheese as favouritl 6 ,
nouse0_2 . favouriteBook as favouritl 7_,
case
when nmouseO0_1 .id is not null then 1
when nmouse0 2 .id is not null then 2
when nouseO_.id is not null then 0
end as clazz_
from
Mouse nmouseO_
left outer join
Ki t chenMbuse nouseO 1
on nmouseO0_.id=nmouse0_1 .id
left outer join
Li braryMouse nouseQ 2
on nmouseO0_.id=nmouse0_2 .id

Asin our previous example, other classes can have arelation to the parent class or to one of the sub
classes.

Samples of use.

/* create and set relation */

House house = new House();

Mouse bea = new Mouse("Bea");

house. get M ce() . add(bea) ;

Ki t chenMbuse john = new Ki t chenMouse("John");
house. get M ce() . add(j ohn);

Li braryMouse tim = new Li braryMuse("Tini);
house. get M ce() . add(ti m;
sessi on. save(bea) ;

sessi on. save(j ohn);

sessi on. save(tim;

sessi on. save(house) ;

/* get all kind of mce*/
Li st <Mbuse> result = session.createQuery("select mfrom Muse ni)
dist();

/* select all kitchen mce who |i ke Gauda cheese blue flowers */
Li st <Ki t chenMbuse result = session
.createQuery("select mfromKitchenMouse m where mfavouriteCheese = Gauda'")

139

Inheritance

ist();

/* select all mce of type LibraryMuse */

Li st <Li br aryMouse> result = session
.createQuery("select mfrom Mouse mwhere type(m = LibraryMuse ")
dist();

9.5. Joined Inheritance with Discriminator

Full source code is provided in the package: de.laliluna.inheritance.joineddiscriminator This mapping
isonly support, if you use XML mappings. It has the same class hierarchy as our last example. This
approach is a combination of the two former examples. We have a discriminator asin the single table
example and atable structure asin the last example. We combine a subclass with ajoin.

<hi ber nat e- mappi ng package="de.l al il una.inheritance. | oi neddi scri m nator">
<cl ass nane="Misi cFan" tabl e="t nusi cfan">
........ snip ...
<set nane="nusi cG oups" tabl e="nmnusi cfan_nusi cgroup" >
<key col um="nusi cfan_i d"></key>
<many-t o- many cl ass="Misi cG oup" >
<col um name="nusi cgroup_i d"></col um>
</ many-t o- many>
</set >
</ cl ass>
<cl ass nane="Misi cG oup" tabl e="t nusi cgroup">
........ snip ...
<di scri m nat or col um="di scri m nat or"></di scri m nat or >
<property name="nane" type="string"></property>

<subcl ass name="BoyG oup" di scri nm nator-val ue="boygr oup" >
<join tabl e="t boygroup">
<key col um="nmusi cgroup_i d" ></ key>
<property nane="cryi ngG oupi es" type="bool ean"></property>
</j oi n>

</ subcl ass>
<subcl ass nane="Har dr ockG oup" di scri m nat or - val ue="har dr ock" >
<join tabl e="t hardrock">
<key col utm="rusi cgroup_i d"></ key>
<property nane="destroyedCGuitars" type="integer" not-null="true"/>
</j oi n>
</ subcl ass>
</ cl ass>
</ hi ber nat e- mappi ng>

To be aware of possible performance issues, | will explain you the behaviour of this mapping. When
we insert an object of the subclass boygroup, Hibernate will generate two inserts. Common attributes
are saved in the table tmusicgroup. Subclass specific attributes are saved in the table of the subclass.

insert into tnusicgroup (name, discrimnator, id) values (?, 'boygroup', ?)
insert into tboygroup (cryingG oupies, nusicgroup_id) values (?, ?)

When we select data from a subclass, we always need ajoin.

140

Inheritance

sessi on. creat eQuery("from HardrockG oup").list();

Resulting query:

sel ect hardrockgrO .id as id45_,
har drockgrO_. nane as nane45_,
hardrockgrO 1 .destroyedGuitars as destroye2 47
from
t nusi cgroup har drockgrO_
i nner join thardrock hardrockgrO_ 1 on

har dr ockgrO_. i d=hardrockgrO_1 . nusicgroup_id
wher e hardrockgrO_. di scri m nat or =" har dr ock’

When we select dataform the parent class all tables are joined.

sessi on. creat eQuery("from Miusi cG oup”).list();
Resulting query:

sel ect
nmusi cgroupO_.id as id45_,
musi cgroupO_. nane as nane45_,
nmusi cgroup0_1 . cryi ngG oupies as cryingG2_46_,
musi cgroup0_2 . destroyedGuitars as destroye2 47,
musi cgroupO_. di scrimnator as discrim2_45_
from
t musi cgr oup musi cgroupO_
| eft outer join tboygroup nusicgroup0 1
on musi cgroupO_. i d=nusi cgroup0_1 . rmusi cgroup_id
left outer join thardrock nusicgroup0_2_
on musi cgroupO_. i d=nusi cgroup0_2 . rmusi cgroup_id

The key difference between this approach and xref:inheritanceonetabl eperclassl is the use of the
discriminator column in queries.

sessi on. creat eQuery("from Musi cG oup ng where ng.destroyedCuitars>150")
dist();

would result in the following query for the current approach.

sel ect musicgroupO _.id as id45 , musicgroupO_.nanme as nanme45_,
musi cgroup0_1 . cryi ngG oupies as cryingG2 46 _,
musi cgroup0_2 . destroyedGuitars as destroye2 47 ,
musi cgroupO_. di scrimnator as discrim2_45_
from
t musi cgr oup musi cgroupO_
| eft outer join tboygroup nusicgroup0 1

on musi cgroupO_. i d=nusi cgroup0_1 . rmusicgroup_id
left outer join thardrock nusicgroup0_2_

on musi cgroupO_. i d=nusi cgroup0_2 . rmusi cgroup_id
wher e musi cgroup0_2 . dest royedCuit ars>150

The query is considerably faster as compared to the normal joined apporach. For atest | run with
about 20.000 music groups, equally divided into boygroups and hardrock groups. It becomes even
faster when you explicitly specify the class.

list = session.createQuery(

"from Miusi cG oup ng where ng.class = HardrockG oup and ng. destroyedGuitars>150")

dist():

141

Inheritance

Y ou might consider to use this approach instead of if select performance isimportant.

9.6. Mixing Single table and Joined

Mixing xref:inheritanceonetabl eperclass2 and xref:inheritancesingletable | just want to mention that
mixing these two approaches is possible.

<subcl ass nane="Fl ower" discrim nator-val ue="fl ower">
<property name="col or" type="string"></property>
</ subcl ass>
<subcl ass nane="Har dr ockG oup" di scri m nat or - val ue="har dr ock" >
<join tabl e="t hardrock">
<key col um="nmusi cgroup_i d" ></ key>
<property nane="destroyedCGuitars" type="integer" not-null="true"/>
</j oi n>
</ subcl ass>

9.7. Union Inheritance

Full source code is provided in the package: de.laliluna.inheritance.union for the XML mapping

and de.laliluna.inheritance.tableperclass for the annotation mapping. The class hierarchy does not
differ from our former examples. The differenceisin the tables. Parent class objects will be saved in a
parent class table and each sub class objects in a separate table.

An instance of Mouse is saved in table mouse, a KitchenMouse in the kitchen_mouse table and an
instance of LibraryMouse in the library_mouse table.

Imagine arelation from the class House. The relation is persisted in ajoin table house_mouse
containing two columns house _fk and mouse _fk. The house _fk references the house table and
mouse_fk one entry either in the table mouse, kitchen_mouse or library_mouse. Asthe tableis not
known before hand, we cannot impose a foreign key reference constraint.

A further limitation exists with id generators. The primary key of mouse, kitchen_mouse or
library_mouse must be shared across all these tables. Y ou cannot use IDENTITY or AUTO as
strategy to generate primary keys. Choose a shared SEQUENCE if supported by your database, or
another strategy that guaranties unique primary keys across these tables. The parent class can be
abstract.

i Mouse

)
+id intd
name varchar{Z55)

i LibraryMouse ™ i KitchenMouse L
+id intd +id intd
rame varchar(255) name varchar(255)
favouriteBook wvarchar(255) favouriteCheese wvarchar(255)

Annotation mapping.

142

Inheritance

i mport j avax. persistence. Entity;
i mport javax. persistence. | nheritance;
i mport j avax. persistence. | nheritanceType;
...... snip
@ntity
@ nheritance(strategy = InheritanceType. TABLE PER _CLASS)
public class Muse {
@d @=ener at edVval ue
private |Integer id;
private String nane;

@Inheritance(strategy = InheritanceType. TABLE_PER_CLASS) defines the inheritance strategy. The
sub classes are quite ssmple and do not contain inheritance specific annotations.

@ntity
public class KitchenMbuse extends Mouse{

private String favouriteCheese;

@ntity
public class LibraryMuse extends Muse{

private String favouriteBook

The class House contains a normal one to many relation to Mouse. In this case arelation table is used
but you could use asimple foreign key column in the mouse, kitchen_mouse and library_mouse tables
aswell.

i mport java.util.HashSet;

i mport java.util. Set;

i mport javax. persistence. Entity;

i mport javax. persistence. Joi nCol um;
i mport javax. persistence. Joi nTabl e;
i mport javax. persi stence. OneToMany;
..... snip........

@ntity

public class House {

@d @zenerat edVal ue
private |nteger id;

@neToMany
@oi nTabl e(nane = "house_mouse", joi nCol ums = @oi nCol um(nane = "house fk"),
i nver seJoi nCol ums = @oi nCol um(name = "nouse_fk"))

private Set <Mbuse> nmi ce = new HashSet <Mbuse>();
XML mapping

We use the mapping union-subclass.

<hi ber nat e- mappi ng package="de. |l al il una.i nheritance. uni on">
<cl ass nanme="House" >
....... snip
<set nane="m ce" tabl e="house npuse">
<key col um="house_fk"></key>
<many-t o- many cl ass="Mouse" >

143

Inheritance

<col umm nanme="nouse_f k" ></col umm>
</ many-t o- many>
</ set>
</cl ass>
<cl ass nane="Mouse" tabl e="nouse">
....... snip
<uni on- subcl ass nane="Ki t chenMouse" tabl e="kitchen_nbuse">
<property nane="favouriteCheese"/>
</ uni on- subcl ass>
<uni on- subcl ass name="Li braryMuse" table="I|ibrary_ nouse">
<property nane="favouriteBook" />
</ uni on- subcl ass>
</cl ass>
</ hi ber nat e- mappi ng>

Union subclass mapping does build a union from the parent class and all subclasses. Columns that
do not exist in a subclass are set to null. This has no influence on your classes but is needed to make
union work. If your Mouse class is abstract or if you do not need a table mouse you can replace

<cl ass nanme="Muse" tabl e="nouse">
with
<cl ass name="Muse" abstract="true">
Now, let’s have alook at the behaviour of this mapping. A query like

sessi on. creat eQuery("from Mouse m where type(nm) = LibraryMuse").list();

will create a select from a subsel ect, where the subselect does union all the subclasses and the parent
classtable.

sel ect
nouse0 .id as id5_,
nmouseO_. nane as nanme5_,
nouseO . favouriteCheese as favouritl 6 ,
nouseO . favouriteBook as favouritl 7 ,
nouse0 .clazz_ as clazz_

from

(sel ect
id,
nane,
nul | ::varchar as favouriteCheese,
nul | ::varchar as favouriteBook
0 as clazz_

from
Mouse

uni on

all sel ect
id,
nane,
favourit eCheese,
nul | ::varchar as favouriteBook
1 as clazz_

from
Ki t chenMbuse

uni on

al |l sel ect
id,
nane,

144

Inheritance

nul | : : varchar as favouriteCheese,
f avouri t eBook,
2 as clazz_

from
Li br ar yMouse
) mouseO_
wher e
clazz =2

To build aunion like this takes some time. An advantage of the union approach isthat an insert of a
class Mouse will only happen inits table. The parent table is not touched.

Samples of use.

[* create and set relation */

House house = new House();

Mouse bea = new Mouse("Bea");

house. get M ce() . add(bea) ;

Ki t chenMbuse john = new Kit chenMouse("John");
house. get M ce() . add(j ohn) ;

Li braryMuse tim = new Li braryMuse("Tini);
house. get M ce() . add(ti m;
sessi on. save(bea) ;

sessi on. save(j ohn);

sessi on. save(tim;

sessi on. save(house) ;

/* get all kind of mce*/
Li st <Mbuse> result = session.createQuery("select mfrom Muse ni').list();

/* select all kitchen mce who |i ke Gauda cheese blue fl owers */
Li st <Ki t chenMouse result = session
.createQuery("select mfromKitchenMouse mwhere mfavouriteCheese = Gauda'").list();

/* select all mce of type LibraryMuse */
Li st <Li br aryMouse> result = session
.createQuery("select mfrom Mouse mwhere type(m) = LibraryMuse ").list();

9.8. XML Includes

Full source code is provided in the package: de.laliluna.inheritance.xmlinclude This mapping is only
possible with XML. It usesimplicit polymorphism. We just do not specify any mapping for the parent
class OldMusicGroup but use the inherited propertiesin our sub classes.

Classes Tables
(5 OldMusicFan toldmusicfan = toldhardrock =
oid: Intege.r P id inte(4) el id inkd{4)
o name : String name varchar(2ss) name varchar(255)

o musicGroups :Set

destroyedguitars int44)

id=musicfan_id
/

(3 0ldMusicGroup oldmusicfan_musicgroup =
o id : Integer 22 musicfan_id ink4{4) toldboygroup =]
o name : String musicgroup_class ¥archar(255) &8 id int4{4)
musicgroup_id int4(4) n_ame varchar(255)
L/f ‘T‘ id int4{4] cryinggroupies bool{1)
{9 OldHardrock Group ic) 0ld Bo yGroup
o destroyedGuitars : int o cryingGroupies : boolean

145

Inheritance

The consequence of this approach is that we have to specify all common fields (id, name) for all
mappings. We can reduce the effort using a XML include.

OldMusicFan mapping.

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE hi ber nat e- mappi ng

PUBLI C "-// Hi bernat e/ Hi ber nate Mappi nhg DID 3. 0/ / EN"
“http://hibernate. sourcef orge. net/ hi bernat e- mappi ng- 3. 0. dt d"

[<VENTITY all properties SYSTEM "hi n/de/l al il una/ exanpl ell/ common. xm ">] >

<hi ber nat e- mappi ng package="de. | al i | una. exanpl e11" >
<cl ass name="0d dMusi cFan" tabl e="t ol dmusi cf an" >
<id nane="id">
<gener at or cl ass="sequence" >
<par am nane="sequence" >t nusi cfan_i d_seq</ par an»
</ gener at or >

<l-- MSQ generator for a increnent field
<generator class="increnment"/>
-->
</id>

<property nane="nanme" type="string"></property>
<set nane="nusi cG oups" tabl e="ol dnusi cfan_nusi cgr oup" >
<key col um="nusi cfan_i d"></key>
<many-to-any neta-type="string" id-type="integer">
<net a- val ue cl ass="0 dBoyG oup" val ue="ol dboy"/>
<net a- val ue cl ass="0d dHar dr ockG oup" val ue="ol dhardrock"/>
<col um nanme="nusi cgroup_cl ass" ></col um>
<col um nane="i d" ></col utm>
</ many-t o- any>
</set >
</ cl ass>
<cl ass nane="A dBoyG oup" tabl e="t ol dboygroup">
&al | properties;
<property nane="cryi ngG oupi es" type="bool ean"></property>
</ cl ass>
<cl ass nane="QA dHar dr ockG oup" t abl e="t ol dhar dr ock" >
&al | properties;
<property nane="destroyedCGuitars" type="integer" not-null="true"></property>
</ cl ass>
</ hi ber nat e- mappi ng>

common.xml.

<id nane="id">
<gener at or cl ass="sequence">
<par am nane="sequence" >t musi cfan_i d_seq</ par an»
</ gener at or >

<l-- MWSQL generator for a increment field
<generator class="increnent"/>
o=
</id>

<property name="nane" type="string"></property>

The command [<IENTITY allproperties SY STEM "bin/de/laliluna/examplell/common.xml”>] will
replace all occurrences of & allproperties; with the context of the common.xml file. Aninsert into a
subclass will only result into an insert in one table. A query of all old music groups causes two queries
to be issued, one for each subclass.

146

Inheritance

session. createQuery("fromde. |l aliluna.inheritance.xnl incl ude. d dVusi cG oup")
dist();

Very specia is also the relation to music fan. We need to use a special kind of any mapping to alow
Hibernate to retrieve the proper class. | recommend naming the second column with the same name as
both field name and column name of the subclass.

<col um nane="nusi cgroup_cl ass" ></ col um>
<col um nanme="i d" ></ col utm>

If you do not follow this, you can not issue a query like the following.
sessi on. creat eQuery("select nf from A dMusi cFan nf where nf.musicGoups.id in "+

"(select hg.id from d dHardrockG oup hg where hg. destroyedGuitars > 150) ")
dist();

| consider thisto be a Hibernate problem. My personal impression isthat thisisnot at all avery
beautiful mapping approach, especially when it comes to relations.

9.9. Mapped Super Class

This mapping is the annotation approach to map inherited fields. Full source codeis provided in the
package: de.laliluna.inheritance.mappedsuperclass

LibraryMouse ™ i KitchenMouse
+id intd +id intd
rame varchar(255) name varchar(255)
favouriteBook wvarchar(255) favouriteCheese wvarchar(255)

This example has the same class hierarchy compared to former examples. This mapping is not a
typical inheritance mapping. The parent classitself is not mapped and cannot be used in queries or
relations. This approach is useful, if you want to include properties of the parent class in the subclass
tables, but do not want to use the parent class directly. It could be abstract as well.

Mouse parent class.

i mport javax. persistence. Entity;

i mport javax. persistence. Entity;

i mport javax. persistence. | nheritance;

i mport javax. persistence. | nheritanceType;

i mport javax. persi stence. MappedSuper cl ass;

...... snip.......

@vappedSuper cl ass

public class Muse inplenments Serializable {
@d
@zener at edVal ue(strategy = Cenerati onType. SEQUENCE, generator = "nouse_seq")
private Integer id;
private String nane;

The sub classes do not have any inheritance specific annotations.

KitchenM ouse sub class.

147

Inheritance

@ntity
public class KitchenMbuse extends Muse{

private String favouriteCheese;

LibraryMouse sub class.

@ntity
public class LibraryMuse extends Muse{

private String favouriteBook;

As aready mentioned, another class can not have arelation to the parent class Mouse.

House.

i mport java.util.HashSet;

i mport java.util. Set;

i mport javax. persistence. CascadeType;
i mport javax. persistence. Entity;

i mport j avax. persi stence. Joi nCol um;
i mport j avax. persi stence. Joi nTabl e;

i mport j avax. persi stence. ManyToMany;

....... snip

@ntity

public class House inplenments Serializable {
@d

@:zener at edVal ue
private Integer id;
private String namne;

@manyToMany(cascade=CascadeType. ALL)

@oi nTabl e(nanme = "house_ kit chennouse",
j oi nColums = { @oi nCol um(name = "house_id") },
i nver seJoi nCol ums = {@oi nCol um(nane = "kitchennouse id") })

privat e Set<KitchenMuse> kitchenM ce = new HashSet <Ki t chenMbuse>() ;

@manyToMany(cascade=CascadeType. ALL)

@oi nTabl e(nanme = "house_|i brarynouse",
j oi nColums = { @oi nCol um(name = "nouse_id") },
i nverseJoi nCol ums = { @oi nCol um(name = "librarynouse id") })

private Set<LibraryMuse> |ibraryM ce = new HashSet <Li br ar yMouse>() ;

The query behaviour is the same as anormal 1:n mapping. If you do not need to access the parent
class, than thisis the fastest choice for inheritance mapping. Y ou have to set the GeneratedValue
in the parent class. The Generator itself has to be defined in the sub classes. | consider thisafunny

behaviour of Hibernate. | expected to define both in the parent class.

Samples of use.

/* create and set relation */

House house = new House("Edw n");

Li braryMouse |ibraryMuse = new Li braryMuse();
| i braryMuse. set Nane("sensitive");

house. get Li braryM ce() . add(!li braryMouse);

Ki t chenMbuse kitchenMbuse = new Kit chenMouse();
ki t chenMbuse. set Nane(" Mouse from Anst erdant') ;

148

Inheritance

house. get Ki t chenM ce() . add(ki t chenMbuse) ;
sessi on. save(kit chenMouse) ;

sessi on. save(li braryMuse);

sessi on. save(house) ;

/* sel ect houses having kitchen nmice */
List |ist = session.createQuery(
"select h from House h where size(h.kitchenMce) > 0").list();

/* select all houses with a kitchenM ce havi ng gouda as favourite cheese */
List |ist = session.createQuery(
"select h from House h left join h.kitchenMce k "+
"where k. favouriteCheese = :cheese)")
. set Par anet er ("cheese", "Gauda").list();

149

Chapter 10. Lob with Oracle and
PostgreSQL

A lob isalarge object. Lob columns can be used to store very long texts or binary files. There are two
kind of lobs: CLOB and BLOB. Thefirst oneis a character |lob and can be used to store texts. It isan
aternative to varchar, which islimited in most databases. The second is a binary lob and can be used
to store binary files.

10.1. PostgreSQL

Y ou can find the source code in the project BlobPostgreSQL . | used PostgreSQL 8 with the drivers
from jdbc.postgresgl.org. If you use older versions or other drivers you might encounter different
behaviour. Character lob

A character lob isvery ssimple, if you use PostgreSQL . In the table it is represented as text and can
take any size of characters:

CREATE TABLE annot ati on. docunment
(

| ar geText text,
...... sni p

The class has asimple String field:

private String text;

Annotation mapping.

i mport javax. persistence. Entity;

i mport javax. persi stence. Lob;

..... snip

@ntity

public class Docunent inplenments Serializable {
...... snip

@.ob
private String text;

Just add a @Lob annotation to a string field. That’s all.

XML mapping. Thereisone cavest, if weuse XML. You must specify the type or Hibernate will
generate a varchar column instead of text, if you let Hibernate generate your tables.

<property name="text" type="text"></property>
Binary lob (blob)

There are two options to store blobs in PostgreSQL . The first approach stores the file directly in the
column. The type of such a column is bytea, which is a short form of byte array. The second approach
isto store a OID in the column which references afile. PostgreSQL keeps the file separately from
your table. Thistype of such acolumn isblob or binary object. Y ou can store large blobs in both
column types. The simpler way isto use bytea, but PostgreSQL needs alot of memory, if you use

150

Lob with Oracle and PostgreSQL

the bytea column PostgreSQL and select alot of \ rows having large bytea columns. Columns of
type blob or binaryobject can read the lob as stream, once you access the data. The disadvantage of
blob/binaryobject isthat if you delete atable row the file is not deleted automatically. The following
examples will show awork around for this problem. So you may freely select any of this approaches.

The PostgreSQL table is having a bytea and a blob column.

CREATE TABLE annot ati on. i nage
(

i mageasbl ob oi d,
i mageasbyt ea byt ea,

The bytea approach needs a byte array field in the class. | used imageasBytea[] Annotation mapping:
It isimportant that you specify the type. You will get a blob column, if you don'’t.

i mport j avax. persistence. Entity;

i mport org. hi bernate. annot ati ons. Type;

...... snip

@ntity

public class Image inplements Serializable {

@ype(type = "org. hi bernate. type. Bi naryType")
private byte i mageAsBytea[];

XML mapping. If your field is of type byte[] you don’t have to specify atype. We added it
optionally.

<property nane="i nageAsBytea" type="org. hi bernate.type.Bi naryType"/>
There is nothing special in using this column. Y ou can set byte arrays and get byte arrays.

Samples of use.

[* create a byte array and set it */

byte byteArray[] = new byte[10000000] ;

for (int i =0; i < byteArray.length; i++) {
byteArray[i] = '1";

}

| mage i mage = new | mage();
i mage. set | nageAsByt ea(byt eArray) ;
/[* wite a field to a file */
Fi | eQut put St r eam out put St ream =
new Fi | eQut put Stream(new Fil e("i nage_fil e_bytea"));
out put Stream wri te(i nage. get | mageAsBytea());

The blob approach requires some additional code. If we delete or update a blob image, the large object
will not be deleted as well. Therefore we add arule to the database, which will provide thisfor us.
Hibernate will not see any of this code, but can ssmply rely on the fact that, if it deletes an entry. the
lob will be deleted aswell. Tip: The large object file will not be deleted automatically, if you use a
blob column. In the psgl client or pgadmin issue the following two statements. They will create rules.
Thefirst ruleis called when arow is deleted. It deletes the corresponding lob. The second ruleis
called, when arow is updated. It deletes the old image, if the image has changed.

CREATE RULE dr oppi cture AS ON DELETE TO annot ati on. i nage
DO SELECT | o_unlink(OLD.i mageasbl ob);
CREATE RULE reppicture AS ON UPDATE TO annot ati on. i nage

151

Lob with Oracle and PostgreSQL

DO SELECT | o_unlink(OLD.i mageasbl ob)
where OLD.i nageasbl ob <> NEW i mageasbl ob;

We have to optionsin the class: ajava.sql.Blob field and a byte array. We can use a byte array to map
alob to ablob column as well.

Annotation mapping.

i mport java. sql. Bl ob;

i mport j avax. persistence. Entity;

i mport j avax. persistence. Lob;

...... snip

i mport org. hi bernate. annot ati ons. Type;

i mport org. hi bernate.type. Bl obType; @ntity
public class Image inplements Serializable {

private byte imgeAsBl ob[];
private Bl ob i mageAsBl ob2;

XML mapping: A field of type java.sgl.Blob can be mapped with the following code. \ The typeis
optionally:

<property nane="i nageAsBl ob2" type="j ava. sql . Bl ob" ></ property>

The byte array approach does not work for XML. Either convert your byte arrays from and to
java.sgl.Blob or create a custom type that provides this feature. Y ou can find further information about
custom types in the Hibernate wiki.

Samples of use.

[* creating a blob */

byte byteArray[] = new byte[10000000] ;

for (int i =0; i < byteArray.length; i++) {
byteArray[i] = '1";

}

| mage i mage = new | mage();
i mage. set | nageAsBl ob(byteArray); // a blob as byte array
i mage. set | mnageAsBIl ob2(Hi ber nat e. cr eat eBl ob(byteArray)); // a blob as blob
/* reading */
/! read blob froma byte array is as sinple as froma bytea
Fi | eCut put St r eam out put St ream =
new Fi | eQut put Stream(new File("image_file_ bl ob_array"));
out put Stream write(i nage. get | mageAsBIl ob());
out put St ream cl ose() ;
/1 reading of a blob froma blob is in fact a inputstream
out put St ream = new Fi | eQut put Stream(new Fil e("i mage_file_bl ob_bl ob"));
out put Stream wri t e(i nage. get | mageAsBIl ob2()
.getBytes(1, (int)imge. getl mageAsBl ob2().length()));
out put St ream cl ose() ;

Tip: You can only access the length field if your transaction is open.

i mage. get | mageAsBl ob2() . | engt h()

10.2. Oracle

Character lob

152

Lob with Oracle and PostgreSQL

A character lob isvery simple, if you use can use Oracle 10 or Oracle XE (Express Edition). Oracle
the setString() method of the prepared statement had a limitation of 32756 bytes = about 4000
characters. Y ou can find additional documentation on the Oracle website. http://www.oracle.com/
technol ogy/sample_code/tech/javalcodesni ppet/jdbc/clob10g/handlingclobsinoracl ey dbc10g.html The
class has asimple String field:

private String text;

Annotation mapping: Just add a @Lob annotation to a string field. That's all.

i mport javax.persistence.Entity;
i mport javax. persi stence. Lob;
..... snip......
@ntity
public class Docunent inplenments Serializable {
...... snip.......
@.ob
private String text;

XML mapping

Thereis one cavedt, if we use XML. You must specify the type or Hibernate will generate a varchar
column instead of text, if you let Hibernate generate your tables.

<property nane="text" type="text"></property>

Oracle9work around If your field can be larger than 4000 characters, we need the following work
around. We have to change the field type to Clob.

Annotation mapping.

i mport java.sql.C ob;
i mport javax. persistence. Lob;
........ snip
@.ob
private Cl ob textWrkaround;

XML mapping.
<property name="text Wor kar ound" type="cl ob"></property>

When you save data, use the following code. The code is not portable to Oracle 10.

/[* witing a chlob */
/[* initialize with short blob */
docunent . set Text Wor kar ound(Hi ber nat e. creat eC ob(" "));
/* save before we continue */
sessi on. save(docunent) ;
/* get a oracle clob to have access to outputstream */
Serializabl el ob sc = (org. hibernate. | ob. Seri al i zabl eCl ob) docunent
. get Text Wor kar ound() ;
oracle.sqgl.CLOB clob = (oracle.sql.CLOB) sc.get WappedC ob();
/* wite the text to the cl ob out putstream */
try {
java.io.Witer pw = cl ob. get Charact er Qut put St ream() ;
pw.wite(buffer.toString());
pw. cl ose();
sessi on. get Transaction().commt ();

153

http://www.oracle.com/technology/sample_code/tech/java/codesnippet/jdbc/clob10g/handlingclobsinoraclejdbc10g.html
http://www.oracle.com/technology/sample_code/tech/java/codesnippet/jdbc/clob10g/handlingclobsinoraclejdbc10g.html

Lob with Oracle and PostgreSQL

} catch (SQLException e) {
t hrow new Runti meExcepti on(
" Dat enbankf ehl er bei m Spei chern des Lobs", e);
} catch (1 CException e) {
t hrow new Runti meExcepti on(
" Dat enbankf ehl er bei m Spei chern des Lobs", e);

}

/* reading a cblob */
StringBuffer textFromArkaround = new StringBuffer();

try {
Buf f er edReader buf f eredCl obReader = new Buffer edReader (docunent Rel oaded.

get Text Wor kar ound() . get Character Stream()) ;
String line = null;
whi l e((line = bufferedC obReader.readLine()) !'= null) {
t ext Fr omr kar ound. append(| i ne);

}
buf f er edCl obReader . cl ose() ;

} catch (1 CException e) {

t hrow new Runti meExcepti on(" Fehl er bei m Lesen des Lobs",e);
} catch (SQLException e) ({

t hrow new Runti meExcepti on(" Fehl er bei m Lesen des Lobs",e);

}

Instead of using a Clob field in your class, we could hide this code as well. We could add a second
property providing the clob as java.util.String, create a CustomType.

Binary lob (blob)

A binary lob is very simple, if you use can use Oracle 10 or Oracle XE (Express Edition). We have to
optionsin the class: ajava.sgl.Blob field and a byte array. The corresponding column is always a blob.
Tip: Only annotation mapping does support mapping a byte array to a blob out of the box. Y ou could
create aworkaround and create a ArrayOutputStream and write this to a blob.

Annotation mapping.

i mport java. sql. Bl ob;

i mport j avax. persistence. Entity;

i mport j avax. persistence. Lob;

...... snip

i mport org. hi bernate. annot ati ons. Type;

i mport org. hi bernate.type. Bl obType; @ntity
public class Image inplements Serializable {

private byte inmgeAsBl ob[];

private Bl ob i mageAsBl ob2;

XML mapping. A field of typejava.sgl.Blob can be mapped with the following code. The typeis
optionally:

<property nane="i nageAsBl ob2" type="java. sql . Bl ob"></property>

The byte array approach does not work for XML. Either convert your byte arrays from and to
java.sgl.Blob or create a custom type that provides this feature. Y ou can find further information about
custom types in the Hibernate wiki.

Samples of use.

154

Lob with Oracle and PostgreSQL

[* creating a blob */

byte byteArray[] = new byte[10000000] ;

for (int i =0; i < byteArray.length; i++) {
byteArray[i] = '1";

}

| mage i mage = new | mage();

i mage. set | nageAsBl ob(byteArray); // a blob as byte array
i mage. set | nageAsBl ob2(Hi ber nat e. creat eBl ob(byteArray)); // a blob as bl ob

/* reading */
/! read blob froma byte array is as sinple as froma bytea
Fi | eCut put St r eam out put St ream =

new Fi | eQut put Stream(new File("image file bl ob _array"));
out put Stream write(i nage. get | mageAsBIl ob());
out put St ream cl ose() ;
/1 reading of a blob froma blob is in fact a inputstream
out put St ream = new Fi | eQut put Stream(new Fil e("i mage _file_bl ob_bl ob"));
out put Stream wri t e(i nage. get | mageAsBIl ob2()

.getBytes(1, (int)imge. getl mageAsBl ob2().length()));
out put St ream cl ose() ;

Tip: You can only access the length field if your transaction is open.

i mage. get | mageAsBl ob2() . | engt h()

Further discussions of blob mapping for older Oracle versions can be found here: http://
www.hibernate.org/56.html http://forum.hibernate.org/viewtopic.php?=931155

155

http://www.hibernate.org/56.html
http://www.hibernate.org/56.html
http://forum.hibernate.org/viewtopic.php?t=931155

Chapter 11. Querying data

Y ou have got three options to query data: HQL, criteria queries and SQL.

HQL is aobject-oriented query language of Hibernate and supports al relation and inheritance
mappings.

Li st orders = session. createQuery(
"from Order o where o.invoice. paid=true order by o.datePurchased desc")
dist();

Criteria queries are useful to dynamically generate queries. They support relation and inheritance
mappings as well. Of course you can replace HQL completely with criteria query. The only
disadvantage is that nearly everybody knowing SQL will be able to understand HQL easily. Criteria
gueries are completely different. The following method receives an array of payment stati and creates
aquery dynamically. Thisisvery simple, isn't it?

public List findO derByPaynentstatus(lnteger paymentstatus[])
t hrows DBLayer Excepti on {

Session session = InitSessionFactory. getlnstance().getCurrent Sessi on();
sessi on. begi nTransacti on();
Criteria criteria = session.createCriteria(Order.class)
.add(Property. forName("order Status").i n(paynment st at us))
. addOr der (Or der . desc(" dat ePur chased")) ;
List orders = criteria.list();
sessi on. get Transaction().conmit ();

return orders;

}

| recommend to use HQL for all known queries and criteria queries when you need to generate
complex queries dynamically. SQL does not know any relations or inheritance mappings, so it is by
far more narrative to type SQL queries as compared to HQL. Only in rare cases when you need some
special optimisation you could think of using SQL.

11.1. Useful tools

When starting to learn HQL it can be annoying to test queries. Every time, you want to execute a
guery, you need to startup a Hibernate configuration, which can take a couple of seconds.

There are anumber of tools you might use.

11.1.1. Beam me into the code

Did you ever want to beam yourself into your code. Don’t search any more. Y ou can achieve this
using JRuby. JRuby has an interactive shell, which allows to execute any kind of code. JRuby can
import and execute Java classes.

Start the Jruby shell by typing jirb. Below you can see the commands | have typed in the shell to start
up Hibernate and to execute queries.

i ncl ude Java

156

Querying data

Dir["/path/toal |l Libraries/*.jar"].each { |jar| require jar }
c = Java:: OrgHi bernateCfg:: Configuration. new

c.configure

sf = c. buil dSessi onFact ory

s = sf.openSession

s.createQuery('select h from Hedgehog h').li st

11.1.2. JBoss Tools

JBosstoolsisaplugin for the Eclipse IDE. It provides an HQL editor which allows to execute instant
HQL queries.

http://www.jboss.org/tools

11.1.3. Squirrel SQL Client

Squirrel isawell known SQL client which supports many databases. There is a Hibernate plugin
which allows to execute HQL, see the resulting SQL and the result set.

amnm SQuirreL SQL Client Version 3.2.1

Connect ta: | postgresgl-play |4#] [[5| Active Session: [1 - postgresql-play (.. [5] || il s
" [%] 1 - postgresql-play (play) as postgres]

a

2| [&E]S] : i BE : [FIBE JETIRE

<

[Objects = SQL - Hibernate |

Configuration mappingexamples = |/§f| ¢’ I

Drivers

[Mapped objects — HQL |

select h from Hedgehog h where h.name like ?

[SQLcode | SQLresult = Objects |

select hedgehog0_.id as id51_, hedgehogO_. as name51 from Hedgehog hedgehogld where hedgehogi_. like 7;

http://squirrel-sgl.sourceforge.net/

11.2. HQL

The chapter HQL of the Hibernate referenceisreally good. Thisiswhy | keep this chapter fairly
short. Further query examples can be found in the source code of the mapping examples. The queries
can be found in the exampl e project DeveloperGuide in the class test.de.laliluna.example. TestQuery

11.2.1. Select objects, scalars, etc

With HQL you can select

» one single class object (one JavaClub)

157

http://www.jboss.org/tools
http://squirrel-sql.sourceforge.net/

Querying data

 alist of class objects (al JavaClubs)

 alist of an array of class objects(alist of an array, the array contains JavaClub and , multiple
objects, object.children, data touple, create new objects (report item)

11.2.2. Simple select

Li st results = session.createQuery("from JavaC ub3 ").list();
for (lterator iter results.iterator(); iter.hasNext();) {
Javad ub3 cl ub3 (JavaC ub3) iter.next();
| og. debug(cl ub3);

}

Y ou do not need to write

createQuery("select c¢ fromJavaC ub3 c").list()

Thisis only needed when your want to specify a specific object from joined object or a specific
property. See below for further examples.

11.2.3. Select with a unique result

If you expect a unique result, you can call uniqueResult instead of list to get one object only.

JavaC ub3 ad ub = (Javad ub3) session.createQery("from JavaC ub3 where i d=5")

. uni queResul t () ;
| og. debug("one single club: "+ad ub);

11.2.4. Select with join returning multiple objects

If you use ajoin, you will receive multiple objects. The next example will show how to select only
one of the objects.

results = session.createQuery("from JavaC ub3 c left join c.nenbers").list();
for (lterator iter = results.iterator(); iter.hasNext();) {

Obj ect object[] (Qbject[]) iter.next();

| og. debug("Cl ub: "+object[0]+ " Menber: "+object[1]);

}
11.2.5. Select with join returning one object

If you use ajoin, you will receive multiple objects. If you name one object with select ¢ you will get
only one of them. This query will return multiple lines of the same Javaclub3 if multiple members

exist.

results = session. createQuery(
"select ¢ fromJavaClub3 c left join fetch c. nenbers where "+
"c. menbers. nane=' Peter'")
dist();
for (Iterator iter = results.iterator(); iter.hasNext();) {
JavaC ub3 javad ub3 = (Javad ub3) iter.next();
| og. debug("Cl ub: "+j avaC ub3);

}

158

Querying data

11.2.6. Select with join returning distinct results

The former example returned multiple entries of Javaclub3 if multiple members exist. You can
get distinct resultsif you create a HashSet but you will loose your sort order. This approach was
recommended in former times.

Set setResults = new HashSet (sessi on. creat eQuer y(
"select ¢ fromJavaClub3 c left join c.nmenbers order by c.nane desc")

dist()):
for (lterator iter = setResults.iterator(); iter.hasNext();)
{

JavaCl ub3 cl ub3 = (JavaCd ub3) iter.next();

| og. debug("Club: " + club3);
}

The new class DistinctRootEntityResultTransformer provides a better approach. It will keep your sort
order.

results = session. createQuery(
"select ¢ fromJavaClub3 c left join c.menbers order by c.nanme desc")
.set Resul t Transfornmer(Criteria. Dl STI NCT_ROOT_ENTI TY)

dist();
for (Iterator iter = results.iterator(); iter.hasNext();)
{

JavaCl ub3 cl ub3 = (JavaCd ub3) iter.next();

| og. debug("Club: " + club3);
}

11.2.7. Selecting a single column (scalar values)

Simple types of Integer, String are called scalar values. Y ou can select them explicitly.

results = session.createQuery("select c.id from JavaCl ub3 c").list();
for (Iterator iter = results.iterator(); iter.hasNext();) {

Integer clubld = (Integer) iter.next();

| og. debug("Club Id: "+clubld);

}

11.2.8. Selecting multiple columns (scalar values)

When you select multiple scalar you will get an array of objects.

results = session.createQuery("select c.id, c.nanme fromJavaC ub3 c").list();
for (lterator iter = results.iterator(); iter.hasNext();) {

oj ect object[] = (Object[]) iter.next();

| og. debug("Club Id: "+object[0]+ " nane: "+object[1]);
}

11.2.9. Selecting objects and scalar values

Y ou can mix scalar and objects of course. Y ou only have to keep in mind that you get an array
holding different kind of classes.

results = session. createQuery(
"select ¢, mnane from JavaClub3 c left join c.nmenbers m').list();

159

Querying data

for (lterator iter = results.iterator(); iter.hasNext();) {
oj ect object[] = (Cbject[]) iter.next();
JavaC ub3 cl ub3 = (Javad ub3) object[O0];
String nane = (String) object[1];
| og. debug("d ub: "+cl ub3+ " Menber nane: "+nane);

}
11.2.10. Selecting selective properties of a class

If you have a class with alot of properties but need only afew of them you can create an object with
selective properties. Thisis only useful when reading data. Y ou can not persist such an object.

results = session. createQuery(
"sel ect new Javad ub3(c.nanme) from JavaC ub3 c").list();
for (lterator iter = results.iterator(); iter.hasNext();)

{

Javad ub3 el enent = (Javad ub3) iter.next();
| og. debug(el enent. get Nane()) ;

}

Do not forget that you need a corresponding constructor in your class.

11.2.11. Simple where condition

If your where condition will limit the result to one object you can use the method uniqueResult()
instead of list().

aCdl ub = (Javad ub3) session.createQery("from JavaC ub3 c where c.id=5")
. uni queResul t () ;
| og. debug("one single club: "+ad ub);

Y ou are not obliged to use alias names but it is recommended to use them.

JavaCl ub3 ad ub = (Javad ub3) session.createQery("from JavaC ub3 where id=5")
. uni queResul t () ;
| og. debug("one single club: "+ad ub);

11.2.12. Walking through relations

Once your application becomes more complex, you will have to walk through deeper relations. The
following picture shows aroom having multiple cupboards with one lock each with one key each.

images.images/c_queries walking_relations.jpg[]

Y ou can easily walk through one to one relations.

results = session.createQery("from Cupboard c¢c where c. | ock. key. nane = ?")
.setString(0, "old key")
dist();
for (Iterator iter = results.iterator(); iter.hasNext();)
{
Cupboard cupboard= (Cupboard) iter.next();
| og. debug(cupboard) ;

}

If you want to walk through 1:n relations you cannot use something like:

160

Querying data

sessi on. creat eQuery("from Room r where r.cupboards. | ock. key. name = ?")
.setString(0, "old key")
dist();

The cupboards attribute of room is a java.util.List and has no attribute lock. Instead you must use alias
names for each many attribute.

/* wal ki ng through relations with 1:n */

results = session.createQuery(
"select r fromRoomr left join r.cupboards c where c. | ock. key. name = ?")
.setString(0, "old key")

dist();
for (lterator iter = results.iterator(); iter.hasNext();)
{

Room roon= (Roon) iter.next();

| og. debug(roon);
}

11.2.13. Where condition in a related object

We want all clubs where thereis a member named Peter, so the where condition isin arelated object.
We do not need ajoin, Hibernate will join implicitly.

Li st results = session.createQuery(
"select ¢ fromJavaC ub3 c left join c.nenbers mwhere m nane='Peter' ")
dist();
for (lterator iter = results.iterator(); iter.hasNext();) {
Javad ub3 cl ub3 = (JavaCd ub3) iter.next();
| og. debug("C ub with nmenber named Peter: "+cl ub3);

}

11.2.14. Where condition with parameters

Y ou can pass any kind of parameters using the session.set.... methods. There are special methods for
all kinds of Javatypes. Mapped classes can be set with setEntity

Query query = sessi on
.createQuery("select ¢ fromJavaC ub3 c left join c.menbers m" +
"where c.id > ? and mnane |ike ?");
results = query.setlnteger(0,5).setString(1l, "Peter%).list();
for (Iterator iter = results.iterator(); iter.hasNext();) {
JavaC ub3 javad ub3 = (Javad ub3) iter.next();
| og. debug(" Sone cl ubs: "+j avaC ub3);

}

11.2.15. Conditions on collections

If you want to select all authors having written more than 2 books, you can use the size condition on a
collection.

Li st <Aut hor > aut hors = sessi on. creat eQuer y(
"from Aut hor a where size(a.books) > 2").list();
for (Author author : authors) {
| og. i nfo(author);

}

161

Querying data

To select entities with empty collections, you may use empty.

Li st <Aut hor > aut hors = sessi on. creat eQuer y(
"from Aut hor a where a.books is enpty").list();
for (Author author : authors) {
| 0g. i nfo(aut hor);
}

The collections can be searched as well for a specific entity. The example selects all books belonging
to the crime story category.

BookCat egory crimeStory = (BookCategory) session.createQuery(
"from BookCat egory b where b.nanme = ?")
.setString(0, "Crime story")
. uni queResul t () ;
Li st <Book> books = sessi on. creat eQuery(
"fromBook b where ? in el enents(b. bookCat egories)")
.set Paraneter (0, crimeStory).list();
for (Book book : books) {
| 0g. i nf o(book) ;
}

An aternative solution is using member of.

Li st <Book> books = sessi on. creat eQuery(
"from Book b where :x nenber of b.bookCategories")
. set Paraneter("x", crinmeStory)
dist();

The functions empty, elements or size are a comfortable short cut to avoid subqueries.

11.2.16. Where condition with mapped class

We use a mapped class as parameter in this query.

results = session.createQery("from JavaC ubMenber3 m where mclub = ?")
.setEntity(0, cl ub3)
dist();
for (lterator iter = results.iterator(); iter.hasNext();) {
JavaCl ubMenber 3 nenber = (JavaC ubMenber3) iter.next();
| og. debug(" Menber in the club: "+club3+" is: "+nenber);

}

11.2.17. Where condition with mapped class on the
multiple side

When the attribute you want to compare is a collection like JavaClub3.members then you must usein
elements(...).

results = session.createQuery("from Javadl ub3 ¢ where ? in elenents (c.nenbers)")
.set Entity(0, mnenber 3)
dist();

for (lterator iter = results.iterator(); iter.hasNext();) {

JavaCl ub3 javad ub3 = (Javad ub3) iter.next();
| og. debug(" Menber: "+menber3+" is in the club: "+ avad ub3);

162

Querying data

11.2.18. All, In, Some, Exists, Any elements queries

These element can be used to compare afield to values of a subselect. The following samples will
explain the usage.

This query selects al pools not being in Frankfurt which sizeis at least bigger than one pool in
Frankfurt.

pool s = sessi on. creat eQuery(
"from Swi mm ngPool p where p.city <> 'Frankfurt' and p.size > "+
"any (select p2.size from Swi mm ngPool p2 where p2.city like 'Frankfurt')")
dist();
for (lterator iter = pools.iterator(); iter.hasNext();)
{
Swi nmi ngPool pool = (Swi mmi ngPool) iter.next();
| og. debug(pool) ;
}

Some isasynonym for Any.

This query selects all pools not being in Frankfurt which sizeis bigger than all poolsin Frankfurt.

pool s = session. creat eQuery(
“from Swi nmmi ngPool p where p.city <> 'Frankfurt' and p.size "+
"> all (select p2.size from Sw nm ngPool p2 where p2.city like 'Frankfurt')")
dist();
for (lterator iter = pools.iterator(); iter.hasNext();)
{
Swi nmi ngPool pool = (Swi mmi ngPool) iter.next();
| og. debug(pool) ;
}

This query selects al pools being the same size as a pool in Frankfurt.

pool s = sessi on. creat eQuery(
"select p from Swi mm ngPool p where p.city <> 'Frankfurt' and p.size in "+
"(sel ect p2.size from Swi nm ngPool p2 where p2.city like 'Frankfurt')")
dist();
for (lterator iter = pools.iterator(); iter.hasNext();)
{
Swi mm ngPool pool = (Swi mmi ngPool) iter. next();
| og. debug(pool) ;
}

Elements can be used to refer to single elements of the n side of arelation. The next query selects all
pool owners having a swimming pool.

pool s = sessi on. creat eQuery(
"sel ect o from Pool Omer o where exists el enent s(o. sw nmi ngPool s)")
dist();

Finally, we select all PoolOwner having a swimming pool greater than 20.

pool s = sessi on. creat eQuery(
"sel ect o from Pool Omer o where el enent s(0.swi nm ngPools) in "+
"(select p from Swi mm ngPool p where p.size > 20)")
dist();

163

Querying data

11.2.19. NamedQuery

A named query is defined once and reused multiple times. It has a name to be identified. Named
gueries are useful, if you need to reuse a complex query at various places. In addition they provide a
dlight performance advantage.

Sampl e code in mapping-examples-annotation package de.laliluna.other.namedquery.

The example below shows a named SQL query using aresult set mapping.

@amedQueri es({
@lamedQuer y(nanme = "bookQuery", query =
"from Conmput er Book b where b.id > :ninld and b. name = :nanme",
hints = { @ueryHi nt (name = "org. hi bernate.readOnly", value = "fal se")})
})

@ntity
public class ConputerBook {...

Using anamed query is pretty ssimple.

Li st <Conput er Book> books = sessi on. get NanedQuer y("bookQuery").list();
for (ConputerBook report : books) {

System out. println(report);
}

org.hiber nate.annotation.NamedQuery and javax.per sistence.NamedQuery

Both Hibernate and Java Persistence includes a @NamedQuery annotation. If you use the Hibernate
API (= Session) you might consider to use the Hibernate version. It is easier to configure, as it
provides variables for configurations like fetchS ze, timeOut or the caching behaviour cacheMode of
the query. JPA requires to use string constants for query hints.

Hibernate named query.

@r g. hi ber nat e. annot ati ons. NamedQuer i es{
@r g. hi ber nat e. annot at i ons. NamedQuer y(

nane = "foo", query =
“from Conput er Book b where b.id > :ninld and b. name = :nanme",
fl ushMode = Fl ushModeType. AUTO
cacheable = true, cacheRegion = "", fetchSize = 20, tineout = 5000

conment = "A conment", cacheMbde = CacheMbdeType. NORMAL
readOnly = true)})

Java Persistence named query.

@ avax. persi st ence. NanmedQueri es({ @ avax. per si st ence. NanedQuer y(
nane = "bookQuery", query =

“from Conput er Book b where b.id > :ninld and b. name = :nanme",
hints = {
@ueryH nt (name = "org. hi bernate. readOnly", value = "fal se"),
@ueryH nt (nane = "org. hi bernate.tinmeout", value = "5000")})

)

Opinion on Named Queries

L

| personally do not like them, as | prefer to see the HQL or SQL code right in the code
where it occurs without looking around for the definition of the named query.

164

Querying data

11.3. Criteria Queries

A criteriaquery can include multiple criterias. Each criteria can include multiple criterions, which can
include other criterions as well. See the following figure to understand the structure.

» Criteria(aclass e.g. JavaClub)

* Criterion: or condition

o Criterion: name = xy

 Criterion: id=5

o Criterion: city = Frankfurt

 Criteria(arelated class, e.g. JavaClub.members)

e Criterion; name=Peter

11.3.1. Simple select

List results = session.createCriteria(JavaC ub3.class).list();
for (lterator iter = results.iterator(); iter.hasNext();)

{
JavaC ub3 cl ub3 = (JavaC ub3) iter.next();

| og. debug(cl ub3);
}

11.3.2. Select with a unique result

If you expect a unique result, you can call uniqueResult instead of list to get one object only.

JavaC ub3 aC ub = (Javad ub3) session.createCriteria(JavaCd ub3. cl ass)

.add(Restrictions.eq("id", 5))
. uni queResul t () ;
| og. debug("one single club: " + ad ub);

11.3.3. Select with join returning objects multiple

times

If you fetch the members of a JavaClub3 you will receive multiple entries for a JavaClub3 if it has

more than one member.

| og. debug("Sel ecting with fetching does not result in an array of objects");

results = session.createCriteria(JavaC ub3. cl ass)

. set Fet chMode(" menbers", FetchMode. JO N)

dist();
for (lterator iter = results.iterator(); iter.hasNext();)
{

JavaC ub3 javad ub3 = (JavaC ub3) iter.next();

| og. debug("d ub: " + javad ub3);

}

165

Querying data

If you only want to initialize the members you can use aresult transformer.

11.3.4. Select with join returning distinct objects

The former sample explained that ajoin can result into multiple lines for an object. In the HQL
samples we used an approach like

Set set = new HashSet (get Sessi on() . creat eQuery(
"select i fromlnvoice i inner join fetch i.orders").list());

The main disadvantage is that we loose any kind of ordering. Criteria queries provide an aternative: a
ResultTransformer which keeps the ordering as well.

| og. debug("Sel ect with fetching with a result transforner");
results = session.createCriteria(Javad ub3. cl ass)

.addOr der (Or der . desc("nane"))

. set Fet chMode(" menbers", Fet chMode. JO N)

.setResul t Transfornmer (Criteria. D STI NCT_ROOT_ENTI TY)

dist();
for (lterator iter = results.iterator(); iter.hasNext();)
{

JavaC ub3 javaC ub3 = (JavaC ub3) iter.next();

| og. debug("C ub: " + javaCd ub3);
}

11.3.5. Select with a where condition on a related
object

Simply add afurther criteriafor the related object. In this case we select al clubs with a member
named Peter.

| og. debug(" Sel ecti ng an object with a where condition on a related object");
results = session.createCriteri a(JavaC ub3. class).createCriteria("menmbers")
.add(Restrictions.eq("nanme", "Peter")).list();
for (lterator iter = results.iterator(); iter.hasNext();)
{
JavaC ub3 javaC ub3 = (JavaC ub3) iter.next();
| og. debug("C ub: " + javaC ub3);

}

11.3.6. Selecting a single column (scalar values,
projections)

Simple types of Integer, String are called scalar values. Y ou can select them explicitly.

results = session.createCriteria(JavaC ub3. cl ass). set Proj ecti on(
Proj ecti ons. proj ecti onLi st ()
.add(Projections. property("id"))
.add(Projections. property("nane")))
dist();
for (Iterator iter = results.iterator(); iter.hasNext();)

{
bj ect object[] = (Object[]) iter.next();

166

Querying data

| og. debug("Club Id: " + object[0] + " nane: " + object[1]);
}

Selecting multiple columns (scalar values, projections)

When you select multiple scalar you will get an array of objects.

results = session.createQuery("select c.id, c.nane from Javad ub3 c")
dist();

for (lterator iter = results.iterator(); iter.hasNext();) {
bj ect object[] = (Object[]) iter.next();
| og. debug("Club Id: "+object[0]+ " nane: "+object[1]);

}
Selecting selective properties of a class

If you have a class with alot of properties but need only afew of them you can create an object with
selective properties. Thisis only useful when reading data. Y ou can not persist such an object. With
criteria queries you use atransformer to create the object.

results = session.createCriteria(JavaC ub3. cl ass)
.set Proj ection(Projections. property("nane"))
. set Resul t Tr ansf or mer (
new Al i asToBeanResul t Tr ansf or nmer (Javad ub3. cl ass))

dist();
for (Iterator iter = results.iterator(); iter.hasNext();)
{

JavaC ub3 el emrent = (JavaC ub3) iter.next();

| og. debug(el enent. get Nane()) ;
}

Walking through relations

Once your application becomes more complex, you will have to walk through deeper relations. The
following picture shows aroom having multiple cupboards with one lock each with one key each.

images.images/c_queries walking_relations,jpg[]

You can easily walk through 1:1 and 1:n relations using criteria queries:

results = session.createCriteria(Cupboard.class).createCriteria("l ock")
.CcreateCriteria("key")
.add(Restrictions. eq("nane", "old key"))

dist();
for (lterator iter = results.iterator(); iter.hasNext();)
{

Cupboard cupboard = (Cupboard) iter.next();

| og. debug(cupboard) ;
}

results = session.createCriteri a(Room cl ass).createCriteria("cupboards")
.createCriteria("lock").createCriteria("key")
.add(Restrictions. eq("nane", "old key"))
dist();

for (Iterator iter = results.iterator(); iter.hasNext():;)

167

Querying data

Room room = (Room) iter.next();
| og. debug(roon);
}

11.3.7. Simple where condition

Theresult set is asingle object, so we return it with uniqueResult().

JavaCl ub3 aC ub = (Javad ub3) session.createCriteria(Javad ub3. cl ass)
.add(Restrictions.eq("id", 5))
. uni queResul t () ;

| og. debug("one single club: " + ad ub);

11.3.8. Where condition in relation

We need to create a second criteriafor the property.

List results = session.createCriteria(JavaC ub3. cl ass)
.createCriteria("menbers")
.add(Restrictions. eq("nane", "Peter"))
dist();

for (lterator iter = results.iterator(); iter.hasNext();) {
JavaC ub3 cl ub3 = (JavaC ub3) iter.next();
| og. debug("Cl ub with nmenber named Peter: " + club3);

}

11.3.9. Where with or condition

We will select al clubswith id > than 5 or with a name\ starting with Java where there is a member
named Peter.

Hint: disunction isthe same asor in HQL

[/ TODO when you use Java 1.4 or ol der you must replace the number 5
results = session.createCriteria(Javad ub3. cl ass)
.add(Restrictions. disjunction()
.add(Restrictions. eq("nane", "Java%))
.add(Restrictions.gt("id", 5)))
.createCriteria("menbers")
.add(Restrictions. eq("nane", "Peter"))
dist();
for (Iterator iter = results.iterator(); iter.hasNext();) {
Javad ub3 cl ub3 = (JavaC ub3) iter.next();
| og. debug("C ub with nmenber named Peter: " + club3);
}

11.3.10. Conditions on collections

If you want to select all authors having written more than 2 books, you can use the size condition on a
collection.

Li st <Aut hor> aut hors = session.createCriteria(Author.class)
.add(Restrictions.size& ("books", 2)).list();

168

Querying data

for (Author author : authors) {
| og. i nf o(aut hor);

}
To select entities with empty collections, you may use empty.

Li st <Aut hor > aut hors = session.createCriteria(Author.class)
.add(Restrictions.iskEnpty("books")).list();

11.3.11. All, In, Some, Any elements queries

These element can be used to compare afield to values of a subselect. The following samples will
explain the usage.

This query selects al pools not being in Frankfurt which sizeis at least bigger than one pool in
Frankfurt. Someis asynonym for Any.

Det achedCriteria detachedCriteria = DetachedCriteria.ford ass(
Swi mm ngPool . cl ass) . set Proj ecti on(Projections. property("size"))
.add(Restrictions.eq("city", "Frankfurt"));
pool s = session.createCriteria(Sw mm ngPool . cl ass)
.add(Restrictions.ne("city", "Frankfurt"))
.add(Property. forName("si ze") . gt Sone(det achedCriteria))

dist();
for (lterator iter = pools.iterator(); iter.hasNext();)
{

Swi mm ngPool pool = (Swi mri ngPool) iter. next();

| og. debug(pool) ;
}

This query selects al pools not being in Frankfurt which sizeis bigger than al poolsin Frankfurt.

Det achedCriteria detachedCriteria = DetachedCriteria.forC ass(
Swi mm ngPool . cl ass) . set Proj ecti on(Projections. property("size")).add(
Restrictions.eq("city", "Frankfurt"));

pool s = session.createCriteria(Sw mm ngPool . cl ass) . add(
Restrictions.ne("city", "Frankfurt")).add(

Property. forNane("size").gtAl | (detachedCriteria)).list();
for (lterator iter = pools.iterator(); iter.hasNext();)

{

Swi nm ngPool pool = (Swi mmi ngPool) iter.next();
| og. debug(pool) ;

}

This query selects al pools being the same size as apool in Frankfurt.

det achedCriteria = DetachedCriteria.forC ass(Sw mi ngPool . cl ass)
.set Proj ection(Projections.property("size"))
.add(Restrictions.eq("city", "Frankfurt"));
pool s = session.createCriteria(Sw mm ngPool . cl ass)
.add(Restrictions.ne("city", "Frankfurt"))
.add(Property. forName("si ze").in(detachedCriteria))

dist();
for (lterator iter = pools.iterator(); iter.hasNext();)
{

Swi mm ngPool pool = (Swi mri ngPool) iter. next();

| og. debug(pool) ;
}

169

Querying data

Finally, we select all PoolOwner having a swimming pool outside of Frankfurt which sizeis not
greater than 20.

detachedCriteria = DetachedCriteria.forC ass(Sw mi ngPool . cl ass)
.add(Restrictions.gt("size", 20))
.add(Restrictions.ne("city", "Frankfurt"))
.set Projection(Projections.property("id"));

pool s = session.createCriteria(Pool Ower. cl ass).createAlias("sw mi ngPool s, "s")
. add(Subqueri es. propertyln("s.id", detachedCriteria))
dist();

for (lterator iter = pools.iterator(); iter.hasNext();)

{
Pool Omer pool = (Pool Owner) iter.next();
| og. debug(pool) ;

}

Important: Frequently, it is better to use a projection in subqueries to select an id, instead of an object
like SwimmingPools. | found that working on objects does not work as expected in some situations.

11.4. Native SQL

| recommend not to use native SQL but still there are some border cases requiring direct access to
SQL. Hibernate even provides help to convert SQL result sets into entities.

By default SQL result set rows are returned as object array. Here is a simple example query.

Li st results = session. createSQ.Query(
"select c.id, c.nanme from tjavaclub c left join tjavacl ubmenber m"+
"on c.id=mclub_id where m nane='Peter' ")
dist();
for (lterator iter = results.iterator(); iter.hasNext();) {
oj ect[] objects = (Ohject[]) iter.next();
Integer id = (Integer) objects[O0];
String nane = (String) objects[1];
| og. debug("Club Id: " +id + " Nane: " + nane);
}

Update or insert queries are not possible. The following leads to an exception.
sessi on. cr eat eSQLQuer y(

"update tjavacl ub set nane='new nane' where id =5")
. execut eUpdat e() ;

Exception in thread "main" java.l ang. Unsupport edOperati onExcepti on
Updat e queries only supported through HQ
at org. hibernate.inpl.Abstract Queryl npl . execut eUpdat e(
Abst ract Queryl npl . j ava: 753)
at test.de.laliluna.exanpl el. Test Query. nativeSqgl (Test Query. java: 69)

11.4.1. SQL to Entity

Hibernate helps you to transform SQL resultsinto entity classes.

Sample code in mapping-exampl es-annotation package de.laliluna.other.namedquery.

170

Querying data

Assuming that SQL column names and class properties are the same, you can write the following code
to get alist of computer books.

Li st <Conput er Book> reports = session. creat eSQ.Query
("select * from conput er book")
. addEnt i t y(Conput er Book. cl ass)
dist();

The column names of the SQL result must match the expected columns. We will dightly modify the
example. The book has two attributes. The name of the book is mapped to book name

@ntity

public class Conput er Book {
@d
@cener at edVal ue(strategy = CGenerationType. AUTO
private Integer id;

@col um(nane = "book nane")
private String nane;
/1

Therefor the SQL must return at least two columns named id and book_name. The following SQL
query will fail with a column book name not found exception.

Li st <Conput er Book> reports = session. creat eSQ.Query
("select id, nane from conmput erbook")
. addEnt i t y(Conput er Book. cl ass)
dist();

To fix the query you can make use of aliasin your SQL query or use SQL result set mapping. The
latter is explained in the next chapter.

Using an alias.

Li st <Conput er Book> reports = session. creat eSQ.Query
("select id, nane as book nane from conput er book")
. addEnt i t y(Conput er Book. cl ass)
dist();

M odifying entities

Your entities are real entities. Their state is persistent after the query, you can modify the entities and
they will be saved in the database with the next transaction commit.

Sessi on session = | nitSessionFactory. getlnstance().getCurrent Sessi on();
sessi on. begi nTransacti on();
Lab aLab = (Lab) session.createSQQuery("select |.* fromlab | limt 1")

.addEntity(Lab. cl ass)

. uni queResul t () ;
alLab.setTitle("My first Hi bernate Lab");
sessi on. get Transaction().commt();

SQL debug output.

DEBUG SQL: 111 - /* update de.lalil una. ot her. namedquery. Lab */
update Lab set title=? where id=?

Multiple entities

171

Querying data

If you want to select multiple entities or join a collection, there is a good chance to have naming
conflicts of the result set columns (multiple columns with the same name). Hibernate cannot find out
which column to use to create an entity.

There for there is a special syntax {alias.*} or {alias.propertyName}. If this syntax is used, Hibernate
will modify the SQL to create distinct alias names.

The next query will load an instance of lab and the related book.

Li st<Object[]> result = session.createSQQuery(
"select {c.*}, {l.*} fromconputerbook c¢c join lab | on |.conputerbook fk=c.id")
.addEntity("c", ConputerBook. cl ass)
.addEntity("1", Lab.class)
dist();

for (Object report[] : result) {
Conput er Book book = (Conput er Book) report[O0];
Lab | ab = (Lab) report[1];
System out . pri ntl n(book+ "-"+l ab);

}

The"c" in addEntity(..) correspondsto the {c.*} alias. It tells Hibernate to fill the entity
Computerbook with the values of {c.*}

Below you can see that the SQL query has been modified by Hibernate before being executed.

select c.id as i1d73_0_, c.book nane as book2 73 0 , |.id as id74_1 ,
|.title as title74_1
from conmput erbook ¢ join lab | on |.conputerbook fk=c.id

’Qj SQL resultswith Java Persistence
ll-'-I-\'.l""

The {alias.*} notation is a Hibernate extension. If you want to stick with the JPA standard
and prefer amore verbose approach have alook in the SQL result set mapping chapter
below.

Instead of using wildcards, you can be explicit as well with the alias names.

Li st<Object[]> result = session.createSQ.Quer y(
"select c.id as {c.id}, c.book nane as {c.nanme}, " +
"Il .id as {l.id}, I.title as {l.title} from conputerbook c " +
"join lab | on |I.computerbook fk=c.id")
.addEntity("c", ConputerBook. cl ass)
.addEntity("Il", Lab.cl ass)
dist();

for (Qbject report[] : result) {
Comput er Book book = (Comnput er Book) report[O0];
Lab Iab = (Lab) report[1];
System out . printl n(book+ "-"+l ab) ;

}

Initializing collections

The class Computerbook has a property Set<Lab> labs. Using the {..} syntax we can eager |oad
the collection in the same query. The next query will load a computerbook and will initialize the
collection labs of the book in one query.

172

Querying data

Li st<Object[]> result = session.createSQQuery(
"select {c.*}, {l.*} fromconputerbook c join lab | on |.conputerbook fk=c.id")
.addEntity("c", ConputerBook. cl ass)
.addJoin("l", "c.labs")
dist();

for (Object report[] : result) {
Conput er Book book = (Conput er Book) report[O0];
Lab | ab = (Lab) report[1];
System out . printl n(book+ "-"+l ab);

}

The method addJoin defines that the collection labs of the computer book isinitialized and filled with
the values of {I.*} .

11.4.2. SQL Resultset Mapping

SQL result set mapping is an aternative to map JDBC columns and class properties. As JPA does not
support the {alias.*} notation, result set mapping is at the same time a more portable way.

Sample code in mapping-exampl es-annotation package de.laliluna.other.namedquery.
The following annotation defines a resultset mapping with the name bookReport2.

SQL result set mapping.

@5ql Resul t Set Mappi ng(nane = "bookReport", entities = {
@ntityResult(entityd ass = Conput er Book. cl ass,

fields = {
@i el dResul t (nane = "id", colum = "id"),
@i el dResul t (nane = "nane", columm = "book name")
})
})
@ntity

public class ConputerBook { ...
Now, we can use the result set mapping in a SQL query.

Using an SQL result set mapping.

Li st <Conput er Book> books = sessi on. creat eSQ.Query
("select id, book nane from conputerbook")
. set Resul t Set Mappi ng(" bookReport")
dist();
for (ConputerBook report : books) {
System out. println(report);
}

A result set mapping may contain as well scalar values (ie. single columns).

The next example returns alist of object arrays. Thefirst element of the array is an Computer Book
and the second the number of books with the same name.

@3ql Resul t Set Mappi ngs({
@3ql Resul t Set Mappi ng(nane = "bookReport2", entities = {@ntityResult
(entityd ass = Conput er Book. cl ass,

173

Querying data

fields = {

@i el dResult (nane = "id", colum = "id"),

@i el dResul t (nane = "nane", colum = "nanme")})},
col ums = {@ol umResul t (nhame = "count _group")})

})
Using theresult set mapping.

List<Object[]> list = session.createSQ.Query(
"select b.id, b.book name, (select count(1l) as count _group " +
"from conput erbook where book name = b.book nane) as count _group " +
“from conput er book b")
. set Resul t Set Mappi ng(" bookReport 2")
dist();
for (Qbject of] : list) {
Conput er Book conput er Book = (Conput er Book) o[0] ;
long total = ((Biglnteger) o[1]).]ongVal ue();
| og. debug(conput er Book + "-- Books with same nane: " + total);

}

11.4.3. Named SQL Queries

A named native query is defined once and reused multiple times. It has a name to be identified.
Named queries are useful, if you need to reuse a complex query at various places. In addition they
provide a dlight performance advantage.

Sample code in mapping-examples-annotation package de.laliluna.other.namedquery.

The example below shows a named SQL query using aresult set mapping.

@\anmedNat i veQueri es({
@\anmedNat i veQuery(nane = "report Sql "
query = "select b.id, b.book nanme, (select count(1l) as count _group " +

“from" +
"comput er book where book nane = b. book nane) as count_group " +
"“from conput erbook b", resultSetMappi ng = "bookReport2")})

@ntity

public class ConputerBook {...

Using anamed query is pretty simple.

List<Object[]> list = session.get NamedQuery("reportSql").list();
for (Qbject of] : list) {

Conput er Book conput er Book = (Conput er Book) o[0] ;

long total = ((Biglnteger) o[1]).] ongVal ue();

| og. debug(conput er Book + "-- Books with sanme nane: " + total);

}

Y ou might have noticed that @NamedNativeQuery and @NamedQuery can both be executed by
calling the getNamedQuery method. This can help if you need to migrate an existing application with
alot of SQL queries. First, you transform the SQL in named queries and later on you change the code
to HQL.

11.4.4. JDBC Connection

Sometimes you need plain access to the JDBC connection. There are two approaches.

174

Querying data

The first provides access to the currently used connection and in addition provides exception handling.
It will close the connection if an exception happens. | would consider it the preferred approach. The
session.doWork(..) method will inject the current session.

session.dowWork.

sessi on. doWor k(new Wor k() {

@verride

public void execute(Connection connection) throws SQLException {
Resul t Set resultSet = connecti on. prepareCall (
"select * fromhell o world").getResultSet();

}
1)

Alternatively, you can get a new connection from the connection provider. This connection will not
have any relation to Hibernate.

ConnectionProvider.

Connecti onProvi der connecti onProvi der = ((SessionFactoryl npl enentor) sf)
. get Connect i onProvi der () ;

Connecti on connection = null;
try {
connect i onProvi der . get Connecti on() ;
} catch (SQLException e) {
e.printStackTrace();

}
finally {
i f(connection!=null)
try {
connection. cl ose();
} catch (SQLException e) {
/] ignore or warn (as you like)
}
}

Deprecated connection method

session.connection() is now deprecated.

175

Part Ill. Building applications
and Architecture

Chapter 12. Data Access Objects
12.1. Best practices and DAO

This chapter will explain two approaches you might use as a structure for your Hibernate application.
Both are based on DAO (Data Access Objects). First, | will explain the DAO as defined in the Java
blueprints. Then we will discover the general requirements for a Hibernate application.

Finally, we will continue with the examples showing implementations for Java 1.5 with generics and
an implementation for older Java versions. | will try to explain the ideas behind each approach to
make you better understand what you are doing.

12.2. Data Access Objects DAO

Applications need to access any kind of persistent storage. As you are learning Hibernate you
probably intend to use a database as persistent storage.

But persistent storage is not limited to databases. Any kind of LDAP directories holding user and user
roles, external messaging systems etc. are persistent storages.

A DAO class encapsul ates data sources and the used query language and provides awell defined set
of methods for your application.

Imagine a userDao class providing an interface as shown in the next figure. When your application
only deals with the interface userDao when accessing user information, you can easily replace it with
an implementation using a different database or a LDAP directory. Thisisthe main intention of the
Dao pattern.

public interface UserDao {
public User findByld(lnteger id);
public List findAll();
public void save(User user);
public void del ete(User user);

}

get a PostgreSQL user Dao

User Dao userDao = new User DaoPost gr eSQ.() ;
or aLDAP userDao

User Dao userDao = new User DaolLdap();

Hibernate does slightly change the look of this pattern. If you use plain JDBC you would create a
Dao for each different database you want support. When using Hibernate thisis no longer needed.
Hibernate supports multiple database dialects just by changing the configuration.

Therefore, the content of a Hibernate DAO can be quite simple.

. snip
public User findByld(lnteger id) {
return (User) getSession().get(User.class, id);

177

Data Access Objects

}

public List findAll () {
return get Session().createQuery("fromUser").list();

}

public void save(User user) {
sessi on. save(user);

}

. snip

12.3. Weaving the application structure

In order to illustrate the process of designing we will take a use case as underlying requirement.

We have two kinds of products: paper books and eBooks. Paper books are taken from stock, when
they are ordered by the customer. Ebooks are PDF documents, which can be provided immediately to
the customer. There is not stock available.

arer create order i

[iz eBook)

zend POF j—— 2 updateOrderStatus)

book availakle]
decrease EtDI:k_)-—:} updateCrderstatus >

[hook not availakble]

®
12.3.1. Paper book order

A customer orders a book. The system checks the stock. If the book isavailableit is delivered and
the stock isreduced. If it is not available, the order remains undelivered. A use case which issues a
command to a supplier will not be treated here.

[iz paper book arder)

The question is how to handle exceptions happening during the access of Hibernate and where the
transaction demarcations can be found.

| would propose the following transaction demarcations:

The first transaction is around the initial creation of an order. The later change of the order status
should have no influence on the order creation.

178

Data Access Objects

The process of checking the stock level, the reduction of the stock and the update should happen in
one transaction.

To protect the application against parallel access we should consider to lock the stock level of the
product. If we do not do this, we might have a situation with two clients doing the following:

client A checks stock level

client B checks stock level

client A decreases stock and updates order

client B decreases stock and updates order

The exceptions should not be shown to the customer but handled in a proper way.

12.3.2. eBook order

A customer orders abook. The order is created and the applications sends the eBook as PDF to the
customer. The order statusis set to delivered. We will keep things ssmple and allow only the order of
one book which is a paper or an eBook. Where are the transaction demarcations and how will we treat
exceptions?

| propose the following transaction demarcations:

The first transaction is around the initial creation of an order. The later change of the order status
should have no influence on the order creation.

The update of the order status should only happen when the PDF has been successfully sent. Thisis
our second transaction.

The exceptions should not be shown to the customer but handled in a proper way.

12.3.3. Defining the application layers

We have defined our use cases. The next step isto set up a proper structure for our application.
Choosing a suitable structure is a question of persona preferences. | propose the following approach:

We will set up abusinesslogic layer containing the use cases. (OrderManger in the figure below) This
layer is responsible for the transaction management as well. This layer uses DAOs to access the data.
A DAO does not manage any transactions at all. It receives a Hibernate session and just updates or
returns data.

179

Data Access Objects

sd 5D-Dan]

COrderNahagér’ T'- CTrargattior | [T 0 HerDae = |- {Srotk Dao

I 1: begin

2 create

I
I I
M I
I

4: commit

5. begin

10: com mit

The Problem of reusing businesslogic

There is one situation we must think about. The class OrderManager will have a method called
processOrder which will manage all the transactions. What will happen if we want to use this method
in alarger context with its own transaction? For example another class called ExportManager verifies
if we need an export permission. This class starts a transaction itself, requests the permission and
continues to processOrder of our class OrderManager. In this case the OrderManager should not
create atransaction of its own but should run in the transaction of our ExportManager.

Once approach to solve this problem is to improve our processOrder method. We can make it check
for an existing transaction context. If one exist the method does not handle the transaction, else it
does.

180

Data Access Objects

e — — — — |
e |
S | | |

Exporthanager Transaction OrderManager Transaction OrderDao StockDao
| | | |
u begin -t T u:urder= | | hegin therransactian only if needied ﬁ I
s - create |
] I
hegin e ! -
lock and r:lec:rease u
e s .
update order statu I
T |
|

public void processOrder(Order order) {
/1 check if this method is responsibe for the transaction
bool ean handl eTransacti on = true;
i f (getSession().getTransaction().isActive())
handl eTransacti on = fal se;
i f (handl eTransacti on)
get Sessi on() . begi nTransacti on() ;

/! do sonething inmportant here

i f (handl eTransact i on)
get Sessi on().get Transaction().commt();

}

Approach for reuse of businesslogic

Our Business methods should be clever enough to check if they run within atransaction. If thisis
allowed, they should not open a new transaction. If it is not allowed they should throw an exception.

Those using EJB 2 or container managed transaction (CMT) will know the different transaction types
we are simulating here.

CMT supports awider range of transactions like
Requires-new: to have a new transaction for this method, open transactions are paused.

Requires: will run in an existing transaction if exist. If there is no transaction a new one will be
started.

But thisis not our topic here. | just wanted to mention it.
Reattaching problems

A use case frequently reattaches objects and updates them. Most reattachment strategies do not allow
that an object is already attached. If you allow that use cases can call other use cases you must be
careful that you do not try to reattach an object which is aready in the session.

181

Data Access Objects

Simple use cases

Let’sthink about simple use cases that happen very often in applications:
» Displaying alist of articles

» Displaying one article

The methods are already defined in the ArticleDao. The ArticleManager would begin the transaction,
call the Dao and close the transaction. We would need a method in the business class only adding the
transaction.

Alternatively we could add transaction handling to the DAO methods. When it is not called within
an transaction, the DA O saves the information that is responsible for the transaction and starts and
commits the transaction. In this case the DAO must be clever enough to start a new transaction itself.
The following method could be used in a DAO. It ensures that a transaction is used.

WiebAction AricleManager Tranzaction ArticleDan

findallaicles
begin transaction

7 finceru -"EI

R P &

commit tranzsaction

privat e bool ean transacti onHandl ed;

protected voi d ensureTransaction() {
if (!transactionHandl ed) {
if (getSession() == nul
|| !'getSession().getTransaction().isActive()) {
transacti onHandl ed = true;
/1l get a current or new session, we are responsi ble so we nust
/!l be aware that the session could not exist.
factory. get Current Sessi on() . begi nTransacti on();
}
} else {
transacti onHandl ed = fal se;
try {
get Sessi on() . get Transaction().commt();
get Session().close(); // only useful when auto close in hibernate.cfg.xm is
} catch (HibernateException e) {
/! do not print stacktrace as we will rethow the exception

182

Data Access Objects

/1 e.printStackTrace();
/1 clean up the session and transacti on when an exception
/'l happens

try {
get Sessi on() . get Transaction().rol | back();

get Session().close();// only useful when auto cl ose in hibernate.cfg. xn
} catch (HibernateException el) {

}

if (e instanceof Stal eCbjectStateException) // normaly a
[l version
/1 problem
t hr ow e;

el se
t hr ow new Hi ber nat eExcepti on(e);

}

When we use version tracking a StaleObjectException can happen. The method above will rethrow
the exception to alow that our web action can handle this information.

There are also reasons not to use thiskind of “clever” DAO. First, the structure is not very consistent.
Y our DAOs become some kind of business objects. Y ou will need to handle Hibernate exceptions
directly in your web layer.

| wanted to show you both approaches. | think that not using “clever” DAOsis by far a cleaner
approach but using them leads to less redundant work.

12.3.4. DAO and DaoFactory

A DAO should not have any code configuring a specific session, but it should get the session or a
session factory from the outside. The reason is that you reduce relations and dependencies in your
code and get an application that is easier to maintain or debug. Y ou could even think of a situation
where you have multiple databases and a DAO should receive the session of a specific database.

As aconsequence you will need a DAOFactory to create the DAO classes. Thisfactory initialises the
DAO object with a session or a session factory.

Oneissue | do differently compared to Spring/Hibernate’ s examples or the CaveatEmptor application
from Hibernate in Action, isthat | do not set asession in a DAO but only a sessionFactory. The reason
becomes clear when you look at the following case.

Order Dao order Dao = DaoFactory. get O der Dao() ;
del i ver Ebooks(or der);
del i ver Paper Book(or der) ;
get Sessi on() . begi nTransacti on();
/] here is the problem
order Dao. reattach(order);

If we initialise the orderDao with a session there is afair chance that a deliverEbooks method is
closing the current session. We started a new session with the call to getSession() but the orderDao
still has the old abandoned session. Thisiswhy | prefer to save only a session factory in the DAO that
returns always the session currently open.

183

Data Access Objects

12.3.5. Creating DAOs with generics

As one example you may use the project DaoExample.
Take alook at the source code now and research the following things
Dao Creation

The class Order Dao extends the class BasicDaol mp. Common methods like save, update, lock, delete
are implemented in the BasicDaolmp. Order Dao just adds some special methods needed to access an
order. The orderDao is created by the DaoFactory.

public T findByld(lnteger id) {
return (T) getSession().get(type, id);
}

public void reattach(T entity) {
get Sessi on() . bui | dLockRequest (LockOpti ons. READ) . | ock(entity);

}

public void save(T entity) {
get Sessi on() . saveOr Updat e(entity);
}

public void update(T entity) {
get Sessi on() . update(entity);
public class Articl eDaol np ext ends Basi cDaol np i npl enents Articl eDao {

public Articl eDaol np(Sessi onFactory factory) ({
super (factory, Article.class);
}

publ i c bool ean | ockAndDecrease(Article article, int quantity) {
get Sessi on() . bui | dLockRequest (LockOpt i ons. UPGRADE) . | ock(article);
return article.decreaseSt ock(quantity);

184

Chapter 13. Session and Transaction
Handling

Before we discuss advantages and disadvantages in detail, | would state a general recommendation.

| recommend to use optimistic locking in combination with a short running session for most web
applications. If you want to understand why then continue to read this chapter.

13.1. Hibernate Session

A session provides al methods to access the database and is at the same time a cache holding al data
being used in atransaction. If you load objects using a query or if you save an object or just attach it
to the session, than the object will be added to the Persistence Context of the session.

Per sistence Context

Objects are continuously added to the persistence context of the session until you close the session. If
you call session.get and the object already existsin the persistence context, then the object will not be
retrieved from the database but from the context. Therefore, the session is called afirst level cache.

Thereis one caveat with this behaviour. If you query alot of objects, you might run out of memory if
your session became to large. We will handle strategies for this caveat in the chapter performance.

All database access including read and write access should happen inside a transaction.

A session is not thread safe and should only be used by one thread. Usually thisis guaranteed by the
SessionFactory.

To conclude: A session is used by one user in his thread to write and read data inside of transactions.

Typical Session usage.

Sessi on session = Hi bernat eSessi onFactoryUtil.openSession();
sessi on. begi nTransacti on();
/1 do sonet hi ng
sessi on. save(myQhj ect) ;
sessi on. get Transaction().conmit ();
sessi on. begi nTransacti on();
/1 do sonething el se
Li st result = session.createQuery(
"from Order o where o.invoice. nunmber like "2% ").list();
sessi on. get Transaction().conmit();
sessi on. cl ose();

Write behind behaviour

The session is not sending the SQL statements directly to the database, if you call session.save. There
are a number of reasons for this behaviour:

» keep write locks in the database as short as possible

185

Session and Transaction Handling

» more efficient sending of SQL statements

* allow optimisations like JDBC batching

By the default configuration the SQL statements are flushed when

* tx.commitiscalled

* aquery isexecuted for an Entity which has ainsert/update/del ete statement in the queue
» session.flushiscalled explicitly

Thisisthe reason why you might see no SQL statements when calling session.save.

There is an exception to thisrule aswell. If you use select or identity asid generator, it is required that
Hibernate sends the insert immediately.

13.2. JTA versus JDBC Transactions

Starting from Hibernate 3 the implementation of the session factory has changed. The creation of a
session factory is much easier and the factories you will find through out this book are quite different
from the ones you can find in older examples.

Concerning the transaction handling, there are different options for session factories.

One option is to use the transaction management of your application server. Every JEE application
server provides the Java Transaction APl (JTA), for example Orion, Jonas, Bea Weblogic,
Websphere, Jooss. JTA transactions are more flexible as JDBC transaction handling. Y ou can enlist
other transactional resources into the same transaction or run a transaction across multiple databases.
This requires that the transactional resources supports two-phase-commit transactions.

A pure Servlet application server like Tomcat, Jetty does not include a JTA transaction manager. Y ou
may plug in aJTA solution (e.g. http://jotm.objectweb.org/ or JTA of Jboss) or use the other option
JDBC transactions.

JDBC transactions can be used in servlet engines or in al other kind of Java applications. Christian
Bauer and Gavin King argue in Java Persistence in Action that JTA transactions provide a higher
quality transaction management. | do not agree with this opinion. JTA sooner or later hasto call a
JDBC transaction, thisiswhy it cannot have a higher quality. If you run a application against asingle
database and don’t need distributed transactions or transaction monitoring — which might be provided
by a JEE application server aswell —then it isfine to use JDBC transactions.

13.3. Transaction handling — default
pattern

| have explained before that if you call the Hibernate session, you have to handle exceptions. You
don’'t have to code the exception handling everywhere. The Struts Integration in chapter Hibernate

186

http://jotm.objectweb.org/

Session and Transaction Handling

and Struts Section 14.2, “Hibernate and Struts’ example shows how to do thisin asingle place. In the
following, | will show you all of the required steps.

Default pattern for transaction/exception handling.

Sessi onFactory factory = InitSessionFactory. getlnstance();
Sessi on session = factory. openSession();
Transaction tx = null;

try {
t X = session. begi nTransaction();

/1 do sone work
tx.commt();
} catch (Runti neException e) {

try {
if (tx !'= null)
tx. rol I back();
} catch (HibernateException el) {
| og. error (" Transacti on rol eback not succesful");

}

t hrow e;

} finally {
sessi on. cl ose();
}

We open a session, then we start a transaction calling session.beginTransaction. The transaction
isautomatically bound to the session. If we get no exception then we call tx.commit to commit

the transaction. Before Hibernate sends the commit to the database it will call flush internally to
synchronize the persistence context with the database. All open insert/del ete/update statements will be
sent to the database.

If we get an exception, the Hibernate session becomes inconsistent. We must close it. In the code
above, thisis ensured with the finally block.

In order to prevent atransaction leak in the database we must rollback the transaction. Thisis done
calling tx.rollBack. Imagine your database is unavailable. The rollback may fail aswell, thisisthe

reason why | wrapped it into another try-catch block. After this we throw the first exception again.

We can simplify the pattern but | wanted to explain al requirements we have to implement first.

Y our responsibilities when using Hibernate

» Wrap access to Hibernate in atransaction

* Roll back the transaction in case of an exception

» closethe Hibernate after an exception, it isin an inconsistent state

13.4. JDBC transactions with ThreadLocal

Y ou can find the full source code in the example project DeploymentJdbc.

This configuration was used in most of the sample projects.

187

Session and Transaction Handling

If we want to use a JDBC transaction factory, we don’t have to configure anything. It is the default
behaviour. If you like you can define it explicitly in the Hibernate configuration file hibernate.cfg.xml

<property nane="transaction.factory_ cl ass">
org. hi bernate. transacti on. JDBCTr ansact i onFact ory
</ property>

We can define a session context. Thisis a place where Hibernate will store the session. One option is
a ThreadL ocal session context. It uses a Java ThreadLocal which guaranties that every thread can only
See its own session.

<l-- thread is the short name for

or g. hi ber nat e. cont ext. Thr eadLocal Sessi onCont ext

and | et Hi bernate bind the session automatically to the thread
o=

<property nane="current _session_context class">thread</property>

In addition, the thread context of Hibernate will close the session automatically, if we call commit or
rollback. In contrast to the default pattern, we need to call sessionFactory.getCurrentSession to pick a
session from the context. If there is no session in the context, Hibernate will create one for us.

The Hibernate pattern is slightly shorter as we can omit the closing of the session:

SessionFactory factory = InitSessionFactory. getlnstance();
Sessi on session = factory. get Current Sessi on();
Transaction tx = null;

try {
t X = session. begi nTransaction();

[/l alternativly: factory.getCurrentSession().beginTransaction();
/1 do sone work
tx.commt();
} catch (Runti neException e) {

try {
if (tx !'= null)
tx. rol | back();
} catch (HibernateException el) {
| og. error ("Transacti on rol eback not succesful");

}

t hr ow e;

}

Please be aware, that if you use factory.openSession, the session is not placed in the ThreadL ocal
context.

Hibernate in former times

In the old times you had to implement the ThreadL ocal session context on your own. Thisis no longer
required, at least if you are happy with the default contexts available.

But you will still find alot of old examplesin the web.

13.5. JTA transaction with a single
database

Y ou can find sample source code in the project DeploymentJBossITA.

188

Session and Transaction Handling

In order to use JTA you need to configure a transaction manager. Thisis specific for every
application server. For the JBoss application server, you have to add the following properties to the
hiber nate.cfg.xml.

<property name="hi bernate.transaction.factory_cl ass">

org. hi bernat e. transacti on. JTATr ansact i onFact ory
</ property>
<property name="hi bernate. transacti on. manager _| ookup_cl ass">

or g. hi bernate. transacti on. JBossTransact i onManager Lookup
</ property>
<l-- jtais the short name for org.hibernate.context.JTASessi onCont ext
and | et Hibernate bind the session automatically to the JTA transacti on
This inplies that H bernate will close the session after the transaction
<property nane="hi bernate. current_session_context cl ass">jta</property>

Add the following property, if you want Hibernate to close your session automatically, when you call
commit or rollback.

<property nane="transaction. auto_cl ose_sessi on">true</ property>

Let’s have alook at the Hibernate pattern we get:

Transaction tx = null;

try {
Sessi on session = |nitSessionFactory. getlnstance().openSession();
t X = session. begi nTransaction();
I nvoi ce invoice = new | nvoice();

/1 This line is just to show that you can use get Current Session from now on
I ni t Sessi onFact ory. getl nstance() . get Current Sessi on().save(invoi ce);
tx.commt();

} catch (Runti neException e) {
if (tx !'= null)

{
try {
tx.roll back();
} catch (HibernateException el) {
log.error("Error rolling back");
}
}
t hr ow e;

}

Thereisasubtle difference. We call session.openSession instead of getCurrentSession. In a
application server Hibernate needs to bind the session to a transaction before it is stored in asession
context. The transaction is not available before having called session.beginTransaction. Therefore
Hibernate places the session in the context after beginTransaction was called. Inside of the transaction
you can use getCurrentSession.

Connection and JTA

If you use JTA you must use a datasource provided by your application server. Thisisnormally a
JNDI datasource. Y ou can find a INDI datasource in the sample project of this chapter.

Another option isto bind the factory to JNDI. Y ou just have to specify the following in your
hibernate.cfg.xml. Thisis useful to share a sessionFactory.

<property nane="hi bernat e. sessi on_factory_ name">Hi ber nat eTest 1</ pr opert y>

189

Session and Transaction Handling

13.6. JIDBC or JTA with the Spring
framework

The Spring framework like any other framework offering aspect oriented programming and inversion
of control, let you externalize the transaction handling. Inside your code you will just have an
annotation.

@r ansact i onal
public void hello(){

}..

Thisis not a special feature of Spring framework. Lighter and easier to learn frameworks like Google
Guice or the Nano Container (http://nanocontainer.codehaus.org/) offer the same functionality
considering transaction handling. Y ou can find an example for Spring integrating in chapter Hibernate
and Spring Section 14.1, “Hibernate and Spring”.

13.7. Conversations and Session Lifetime

A conversation consists of one or multiple dialogs. Think about a dialog to edit a product which let
you go through a couple of JSP pages.

In the former examples we always have closed the session directly after acommit or rollback of the
transaction. Most of the time Hibernate has done this for us automatically as we have configured a
ThreadL ocal session context.

<property nanme="current _session_context_ cl ass">t hr ead</ property>

But isthisreally the best approach or do we have alternative options. We could keep the session open
all the time, but how to deal with the transaction in that case. The user might expect that either all or
none of the changes to the product is saved. We might hold the transaction open all the time or not
save at all.

In chapter Lazy Initialization Lazy initialization we have seen the problem of lazy initialization. We
named the option to extend the lifetime of a session from the beginning of the request until the JSP
was rendered. This alows to fetch data during the rendering of the JSP. This approach is called Open-
Session-in-View. Thisis another option as well.

Let’s have alook at the different approaches available.

13.7.1. Short life of a session

For every request we create a new and clean session inside of the application logic. It is closed at
the end of the application logic. The advantage isthat it is unlikely to get the NonUniqueObject
exception, we talked about in chapter 1.6 Working with Objects.

We might get a Lazylnitialization exception during rendering. This happensif we have not initialized
collections, we want to print out during the rendering phase. There is an advantage of the exception as
well: we see immediately what we need to initialize and can do this efficiently.

190

http://nanocontainer.codehaus.org/

Session and Transaction Handling

Another advantage is avery clean application structure. It is simple to handle exceptions from our
application logic and redirect the user to an error page.

sd short life of a se ssion)

Controller Serviet ISP Rendering Weblayer action method Application logic Hibernate DAD Transaction
I I I I I I
: | | : | :
| Y | | [|
o 2 M I |
S 1 N E— _l-Begin-tL:ll.nsmmn______l ______
1 Ukﬁmeds
| session and
I transaction

6: Commit transaction

]

————o
S ey

A consequence of this approach is that the objects change their state to detached between each
request/dialog and they need to be reattached using session.update, session.merge or session.lock.

Let’shave alook at sample code.
Dialog 1

We enter adialog to edit aturtle.

Sessi on session = factory. get Current Sessi on() ;

sessi on. begi nTransacti on() ;

Turtle turtle = (Turtle) session.get(Turtle.class, "4711");
sessi on. get Transaction().commt();

Dialog 2

The user has selected a name for the turtle and clicks on the save button.

session = factory. get Current Session();
sessi on. begi nTransacti on();

turtle. set Name(" Al exander");

sessi on. update(turtle);

sessi on. get Transacti on().commit () ;

Dialog 3

On the next screen the user can input the size of the turtle. He inputs the size and presses the save
button again.

session = factory. get Current Sessi on();
sessi on. begi nTransacti on();
turtle.setSize(Turtl eSize. MEDI UM ;
sessi on. update(turtle);

191

Session and Transaction Handling

sessi on. get Transaction().conmm t ();

This approach is simple but we will write the changes to the database in every step. If you want a
acid transaction saving either all or none of the changes to turtle, we would have store the turtle in the
HTTP session for example and saveit only in the last step.

13.7.2. Lifetime until the view is rendered (Open-
Session-in-View)

The pattern Open-Session-in-View extends the lifetime of the session. Y ou can find an examplein
the project OpenSessioninView. In this project a Servletfilter opens a session and begins a transaction.
After thisthe application logic is called, then the JSP is called to render aview. At the end the
transaction is committed and the session is closed.

sd lifetime until the view is rendered)

ServietFilter

T T
| [Lifetime o™
______ B o T TR Lifetime of

o
session and
transaction

Controller Serviet Weblayer action method | |Application logic Hibernate DAD Transaction

ISP Rendering ‘

Thisis apretty old approach to do this and will talk about a better approach later one. But let’s
have alock at the advantages and disadvantages. Basically it is the opposite of the last approach.
We probably don’t get the LazyInitializationException any more but it might happen that datais
inefficiently fetched during the rendering of the view.

Another problem we will face is exception handling. The commit of the transaction happensin the
servlet filter. With the commit Hibernate flushes all open SQL statements. If we get any exception
there, the view is already rendered and we can’'t even show an error page. The page is already partly
rendered and the browser will not accept aredirect at this point.

At aminimum measure you should call session.flush in the application logic to enforce that open
statements are inserted. Thiswill probably reduce the number of exceptions but still a commit might
fail.

The best approach in my opinion isto commit the transaction inside of the application logic
and to open a second transaction for rendering. Y ou will need some coding and might use the
ManagedSessionContext class of Hibernate in that case.

Concerning the conversation, we will have the same code asin the last example. Between requests, all
entitieswill be in detached state and need to be reattached, if we want to change them.

192

Session and Transaction Handling

13.7.3. Long life of a session

A session with along lifetimeiscaled Extended Session. The session is opened when a conversation
starts and closed when it ends.

sd extended session
Controller Serviet JSP Rendering Weblayer action method | |Application logic Hibernate DAD Transaction
[[I [[[
I I | I | I
| Iy I i I |
T By 2 I | |
! - l—--—--——--—-+ --------------------- Lifetimeoi}
| | session
3: Begin trdnsaction |
|
|
|
4: I
5
e ——
6: Commit tlhnsacrion
7 |
< 2 ! I I
R~ e e S iy |
9 | i | i |
D | | | |
| | | |
| | | |
LI | | | |
| | | | |
| 1M ! = | I I
I : |
By —{ > 12| |
t
|
|
|
13: |
I 14:
| Feras
| 16 15]
lT: E G . !
|
K r——————————- N | R
| | | |
18: | | | | |
L		

Between the requests we need to store the session somewhere. One option isfor examplethe HTTP
Session of aweb application.

In every dialog happens atransaction, but we tell Hibernate not to flush any SQL statements.
Normally a commit would flush all open statements. If we set the FlushMode of the session to
manual, then we take over the responsibility and can do the flushing at the end. Let’s have alook at
the code.

Dialog 1

We show adialog to create a new turtle. The first thing we do after we have called \ openSession isto
change the FlushMode to manual. It is not shown in the code but we will save the Hibernate session in
the HTTP session.

Sessi on session = factory. openSession();
sessi on. set Fl ushivbde(Fl ushMbde. MANUAL) ;
sessi on. begi nTransacti on();

Turtle turtle = new Turtle();

sessi on. save(turtle);

sessi on. get Transaction().commt ();

193

Session and Transaction Handling

Dialog 2

The user selects a beautiful name for the turtle and press save. We fetch the Hibernate session from
the HT TP session and continue to work with it.

[l Hi bernate Session is stored in HITP- Session
sessi on. begi nTransacti on();

turtl e. set Name(" Al exander") ;

sessi on. get Transaction().conmit ();

Dialog 3

Finally the user measures the size of the turtle and inputsit in the last dialog. The Hibernate session
isfetched from the HTTP session. At the end session.flush is called to send all open statements to the
database. Aswe haven't configured automatic closing for the session in the hibernate.cfg.xml, we
have to call \ session.close.

[/ Hi bernate Session is stored in HITP- Sessi on
sessi on. begi nTransacti on();
turtle.setSize(Turtl eSi ze. MEDI UM ;
session. fl ush();

sessi on. get Transaction().conmit ();
sessi on. cl ose();

The extended session approach has an attractive advantage: the session is never closed and the entities
in the session stay in persistent state. Y ou just have to change them and call session.flush at the end.
Thereis no need to call session.update and you may prevent exceptions like the NonUniqueObject
exception. Thereis atrade off aswell. The session might grow as it contains all objects you have
loaded with queries. In addition you are storing this large Hibernate session in the HTTP session. The
former approaches close the session and release all unused entities to be garbage collected. The size of
the session can be managed. Session.evict \ removes entities from the session.

It is up to you to decide what you want to do.
Pitfalls
Sometimes the manual flush doesn’t work. Hibernate just ignores what you want and flushes.

The reason is the chosen id generator. If you use sequence as generator, you will see a select statement
for the id when calling session.save. Even in flush mode manual Hibernate figures out the id. There
are id generators which requires an insert statement, ie: identity and select. If we use them we will get
an immediate insert statementsin the first dialog.

Open Session in View

We might combine the extended session with open session in view. In this case we need to set akind
of marker in the application logic to tell a servlet filter that it can close the session.

13.8. Concurrent Access

Let us think about the following scenario. User Foo selects aturtle to edit it. User Bar selects the same
turtle to edit it. User Foo press the save button, then user Bar press the save button. Well, if two user

194

Session and Transaction Handling

edit the same data, we need to think of concurrent access. What should happen? Basically we have
four options:

* We could prevent that Bar —the later one to edit — can edit the turtle.

» The changes of user Bar —the last one to press save — could overwrite the changes of Foo?But we
have to keep in mind, Bar did not know that Foo was already editing and the changes of Foo might
be more important.

 Should the changes of Foo —the first one to press save — be successful and Bar gets an error
message and needs to restart editing?

 Should Foo be successful while Bar is being informed about the changes and he can decide if we
wants to overwrite, merge or cancel his changes?

The default behaviour of Hibernate is option two. The last change will silently overwrite the changes
before. Although it sounds bad, it is perfectly fine for alot of application. If you don’t expect that two
user edit the same data in parallel then you don’t have to care.

The first approach requires pessimistic locking, the third approach can be easily done with the
optimistic locking functionality of Hibernate. The last approach is basically the third approach
plus manual coding to craft the merge/overwrite/cancel dialog. Let’s have alook at the different
approaches.

13.8.1. Optimistic Locking

Optimistic locking means that in fact we don’t lock the database at al. Thisis not perfectly true,
because for a short moment during the insert or update statement, we will see a short write lock in the
database. To prevent the caveats of concurrent access a version column is used.

The database table has a column indicating the current version of the row. The column can contain an
integer number which isincreased by each change or a timestamp showing the change time.

User Foo (left side in the diagram) and user Bar (right side) load data to edit the same employee. The
version column has the value 1. User Foo saves his changes. Hibernate will verify which version

of the object he has and which version isin the database. Only if he has the current version, he can
update the row. In this case, he has version 1, which is the same as in the database and his changes
will be saved. At the same time Hibernate increments the version to 2

Now user Bar tries to save his changes. Hibernate compares the version numbers. Bar has version 1
but the database has already version 2. Hibernate will throw an exception.

195

Session and Transaction Handling

User Foo Lser Bar

edit Book with ID 4711 Database edit Book with ID 4711
version=1

)4

Gava changas) versiun:l%
W
save changes
Foo's book has

version 1, database
has version 1

Bar's book has
version 1 but
database has
version 2

or g. hi ber nat e. St al eObj ect St at eExcepti on: Row was updated or del eted
by anot her transaction

We can catch the exception and tell Bar that he has to restart. Y ou can find sample code for this
approach in chapter Hibernate and Struts Section 14.2, “Hibernate and Struts”.

Version column impact on performance

The impact of aversion column is neglect able. Don’t expect that you will get a separate select
statement for the version. Hibernate will slightly change the update statement.

update employee set name="?, version=2 whereid = ?and version =1

An SQL update statement returns the number of changed rows. If the SQL result is 1, Hibernate
knows that the entry was successfully updated and that the version isincremented. If it is O, Hibernate
will throw an exception.

Finally let’s have alook how to do this.

Version column The first important thing is to add a version column to your mapping. The type
can be any of integer, long, short, timestamp, dbtimestamp or calendar. The version will be tracked
by ainteger value starting at zero or with a change timestamp depending on the type you selected. |
recommend not to use timestamps. It is possible to create the same timestamp in the same moment
and in addition modern machines quite often run on virtualized server. They suffer of larger time
delays. If the timeis readjusted, you might see new version conflicts.

196

Session and Transaction Handling

Annotation

@/er si on
private int version;

XML

<versi on name="version" type="integer"></version>

Optimistic locking without a version column

If you are not allowed to add a version column —a common problem with legacy systems— you
can still use optimistic locking. Hibernate can compare all columns of the old version to the current
columnsin the database. Thisis of course far less efficient but still better than nothing.

Annotation

We need to set optimisticLock to DIRTY or ALL and enable dynamic updates. This allows Hibernate
to construct the update statements for every update. Normally it reuses the same statement all the time
in order to improve performance.

ALL compares all columns, DIRTY compares only changed columns
i mport javax. persistence. Entity;

i mport org. hi bernate.annotations. Opti nm sticlLockType;

@ntity

@r g. hi bernat e. annotations. Entity(optim sticLock=0Opti m sticlLockType. ALL,
dynam cUpdat e=t r ue)

public class Apple {

XML

<cl ass nane="Appl e" optimstic-lock="all" dynani c-update="true">
Limitations of this approach

Dynamic updates are slower, because Hibernate instead of reusing the same update query all the time,
will recreate the update statement for every request.

Pessimistic locking

Pessimistic locking creates alock in the database and enforces that no other user can edit the

same data row. Thisis a suitable approach for Java application based on Swing or SWT. In aweb
application | discourage to use this approach. Y ou don’t know, if the user is thinking, making a break
or already on holiday. The lock on the object will stay until the HTTP session ends. If you forget

to write a cleanup listener which rollback open transactions in your session, you might even have a
transaction leak.

With modern Ajax technology you can work around this problem and send continuous ping from the
client to the server. If the ping stops, you close down the lock on the database row.

197

Session and Transaction Handling

How to lock arow with Hibernate?

Y ou can lock an entity when you load it

Appl e appel = (Apple) session.get(Apple.class, id, LockOptions. UPGRADE);

or later

sessi on. bui | dLockRequest (LockOpt i ons. UPGRADE) . | ock(appl e) ;

It iseven possible to lock entities using a query.

sessi on. creat eQuery("from Appl e a where a. nanme=?")
. set Par anet er (0, theNane)
. set LockOpti ons(LockOpti ons. UPGRADE) ;

session.lock is deprecated

If you have some Hibernate experience or in old examples, you might be aware of code
like session.lock(customer). This method is now deprecated. Use the buildLockRequest
method, which was demonstrated in this chapter.

198

Chapter 14. Integration with other
technologies

In this chapter you will learn, how to integrate Hibernate into other technologies. The approaches
shown, are proved in real world applications. | will name common pitfalls, you may come across, as
well.

14.1. Hibernate and Spring

Spring is abeautiful framework, to implement the business logic of an application. It can

integrate Hibernate in avery elegant way. Y ou can download Spring from the page http://
www.springframework.org/. This chapter requires that you have knowledge of Spring, as| will not
explain any Spring basics.

The documentation of Spring presents three alternatives. | do not appreciate one of these approaches,
therefore | will present two of them dlightly adapted.

Both examples make use of Spring version 2 and annotations. Therefore you will need a JDK 5 or

newer. If you still have to use Java 1.4, you have to configure transaction handling differently. | will
give you some hints, when we speak about that topic.

14.1.1. Configuration

There are three approaches to configure Hibernate, when using Spring:

» Reference a Hibernate configuration from your Spring configuration

» Complete configuration of Hibernate inside your Spring configuration

» amix of both approaches

| recommend the last approach, because some development environments provide auto completion
for configuration settings in the Hibernate configuration file. Inside a Spring configuration file thisis

of course not supported. Below you can see a picture from the MyEclipse plugin for Eclipse showing
auto-completion:

199

http://www.springframework.org/
http://www.springframework.org/

Integration with other technologies

<property name="cache. provider class"=>
org.hibernate.cache.EhCacheProvider

</properiy=

<property name="c"=</property=

I B c3p0.acquire increment i

<property name="cf o :

<property name="1| c3p0.idle_test period

_ grq_;:hlhta_rnate.t c3p0.max_size

</property= e

c3p0.max_statements

i

<property name="h
<mapping class="d
<mapping class="dl c3p0.timeout

c3p0.min_size

A configuration in Spring requires a datasource and a special SessionFactory provided by Spring. Itis
important that we use the SessionFactory provided by Spring, €lse the integration does not work and
you may easily encounter connection leaks.

<bean i d="dat asour ce"
cl ass="com nthange. v2. c3p0. ConboPool edDat aSour ce" >
<property nane="driverd ass" val ue="org. postgresql.Driver" />
<property nane="jdbcUrl"
val ue="j dbc: postgresql :// 1 ocal host: 5432/ | ear ni nghi ber nat e" />
<property nane="user" val ue="postgres" />
<property nane="password" val ue="p" />
<property nane="nmi nPool Si ze" val ue="2" />
<property nane="nmaxPool Si ze" val ue="4" />
</ bean>
<bean i d="hi ber nat eSessi onFact or y"
cl ass=
"org. springfranmewor k. orm hi ber nat e3. annot ati on. Annot at i onSessi onFact or yBean" >
<property nane="dat aSour ce" ref="datasource" />
<property nane="configlLocati on">
<val ue>cl asspat h: hi ber nat e. cf g. xm </ val ue>
</ property>
</ bean>

The Hibernate configuration file is quite short and does not include any settings for a database
connection, Session handling and transaction.

<hi ber nat e- confi gur ati on>
<sessi on-factory>
<property nane="di al ect" >
or g. hi ber nat e. di al ect. Post gr eSQLDi al ect
</ property>
<property nane="cache. provi der_cl ass" >
or g. hi ber nat e. cache. EhCachePr ovi der
</ property>
<property nane="hbnRddl . aut 0" >none</ property>
<mappi ng cl ass="de. | alil una. exanpl e. donai n. Hedgehog" />
<mappi ng cl ass="de. | alil una. exanpl e. domai n. W nt er Addr ess" />
</ sessi on-fact ory>
</ hi ber nat e- confi gurati on>

Important tips

200

Integration with other technologies

Y ou should not configure your datasource in the Hibernate configuration file. If you till do it, you
will encounter problems once your transactions are managed by Spring.

Alternatively, you can configure all settings of Hibernate in the Spring configuration.

<bean i d="dat asour ce"
cl ass="com nthange. v2. c3p0. ConmboPool edDat aSour ce" >
<property name="driverCd ass" val ue="org. postgresqgl.Driver" />
<property nane="jdbcUrl"
val ue="j dbc: post gresql : / /| ocal host: 5432/ | ear ni nghi bernate" />
<property nane="user" val ue="postgres" />
<property nane="password" val ue="p" />
<property nane="nmi nPool Si ze" val ue="2" />
<property nane="rnmaxPool Si ze" val ue="4" />
</ bean>

<bean i d="hi ber nat eSessi onFact ory"
cl ass="org. spri ngf ranewor k. or m hi ber nat e3. annot ati on. Annot at i onSessi onFact or yBean"
<property nane="dat aSour ce" ref="datasource" />
<property nane="annot at edd asses" >
<list>
<val ue>de. | al i | una. exanpl e. dormai n. Hedgehog</ val ue>
<val ue>de. | al i | una. exanpl e. dormai n. W nt er Addr ess</ val ue>
</list>
</ property>
<property nane="hi ber nat eProperties">
<val ue>
hi ber nat e. hbn2ddl . aut o=none
hi ber nat e. di al ect =or g. hi ber nat e. di al ect. Post greSQLDi al ect
hi ber nat e. cache. provi der _cl ass=or g. hi ber nat e. cache. EhCachePr ovi der
</ val ue>
</ property>
</ bean>

My example uses a SessionFactory supporting annotations and XML.
If you want to use only XML mappings, you can change the class to
org.springframewor k.orm.hiber nate3.Local SessionFactoryBean.

Why not using our simple Hibernate session factory?

We could consider to use our simple session factory, we created in the first example. In that case,
we could select one of the patterns explained in chapter Session Handling Chapter 13, Session and
Transaction Handling.

Sessi on session = factory. get Current Sessi on();
Transaction tx = null;
try {

t X = session. begi nTransaction();

/1 do sonme work

tx.commt();

} catch (Runti neException e) {

try {
if (tx !'= null)
tx. rol | back();
} catch (Runti nmeException el) {
| og. error (" Transaction rol eback not succesful", el);

201

Integration with other technologies

}

t hrow e;

}

Spring provides functionality to manage transactions in a comfortable way. Transaction management
may even include Hibernate and separate SQL queries. If we use our own session factory, we cannot
make use of this functionality.

If you use Spring in your project, | recommend to use the transaction handling of Spring as
well. In that case, it is very important that you do not use the Hibernate transaction methods like
session.beginTransaction.

Spring would not be able to release database connections or close open transactions.

14.1.2. Use of the Spring template

In this chapter, we will have a closer look at the first approach integrating Spring and Hibernate. The
full source codeis provided in the project HibernateSpring. A Maven build fileis so provided. If you
use maven, just type

nmv/n comnpil e

to download all libraries and source files. If you do not use Maven you can download the Spring
framework at

http://www.springframework.org/

The example project makes use of the following libraries:

e gpring.jar

» aspectjrt.jar

* Spring-aspects.,jar

* aspectjweaver.jar

Spring offers atemplate for different persistence technologies, which encapsulates the specific
implementations and exceptions. Exceptions are wrapped by Spring exceptions. Templates exist for
example for the following technol ogies:

* Hibernate,

* JDO,

| batis,

Toplink,

JPA,

JDBC.

202

http://www.springframework.org/

Integration with other technologies

If you use multiple of these technologies, the template is a good approach to achieve acommon
behaviour and transactional handling.

Thefirst step isto create a Hibernate template. This template requires a Spring-Session-Factory as
constructor argument.

HibernateTemplate template = new HibernateTemplate(factory);

The template encapsul ates Hibernate technology. The following code example shows the usage. It is
easier to read the code from the inside.

return (Li st<Hedgehog>) tenpl ate. execut e(new Hi bernat eCal | back() {

public Object dol nHi bernate(Sessi on session)
t hrows Hi ber nat eExcepti on, SQ.Exception {
return session.createCriteria(Hedgehog.class).list();

}
1),

The new HibernateCallback() creates a anonymous implementation of the interface
HibernateCallback. This interface has one method: dolnHibernate. It is called by Spring and
gets as parameter a Hibernate session. The code — doing our work —isin the single line return
session.createCriteria(Hedgehog.class).list() .

Thisfreshly created implementation is passed to the execute method of the template in order to run it.

This construction might look like alittle bit unusual, but allows Spring to encapsul ate the execution of
the Hibernate code, to translate exceptions and to role back a transaction if an exception happens. So
far, we had to do this on our own.

Y ou might question, which transaction can be rolled back? We haven't started one. Well, if we do not
configure a transaction, Spring will set the transaction mode of the JDBC connection to auto-commit.
One of the next chapter will explain how to do make use of transactions explicitly.

A hint: The Hibernate template provides convenient methods for many methods of the Hibernate
session: save, saveOrUpdate, delete, update, etc. Thereisno problem in using them.

t enpl at e. save(hedgehog) ;
Problematic methods of the Hibernate template

| recommend not to use the find methods of the Hibernate template. The template has global settings
for maximum results, caching behaviour and many others and you can easily get unexpected results, if
you forget to remove settings.

| recommend to implement queries with the approach, | have just explained with the
HibernateCallBack and only to use template methods for simple methods like save, update etc.

14.1.3. Alternative approach (nicer)

Thereis probably nicer code than the template with a CallBack implementation. Therefore | want to
show an approach not using this construct as well. The example project is called HibernateSpring?2.

203

Integration with other technologies

We will make use of the method getCurrentSession which exist in the Spring-Hibernate Session-
Factory aswell. Like our examples with a current session context we just call getCurrentSession to
access the Hibernate session.

prot ect ed Sessi on get Current Sessi on() {
return factory. get Current Sessi on();

}
public void save(Hedgehog object) {

get Current Sessi on() . saveOr Updat e(obj ect) ;
}

This codeis not yet complete. With this approach we must manage transactions explicitly and start
one before we call getCurrentSession.

Exception handling

The Spring documentation asserts that with this approach, we have to handle Hibernate exceptions in
our code instead of Spring exceptions.

Thisis not very precisely explained. The exception istranslated alittle bit later. In the first approach
(template) the exception was translated to a Spring exception by the template. The second approach
will trangdlate the exception with the transaction handling after our method was processed.

As Hibernate exceptions are fatal RuntimeExceptions and should be handled in the frontend layer —
for example awebapplication - , thisis no disadvantage at all. We would not deal with a Hibernate
exception inside of a business method.

In my opinion the second approach is a better choice because it is better readable and less code to
write.

14.1.4. Transaction handling

It is quite simple to manage transaction with Spring. We only have to configure a transaction manager.
In this example we will use a JIDBC based transaction manager.

<t x: annot ati on-driven transacti on- manager ="t xManager"/ >

<bean id="t xManager" cl ass=

"org. springframewor k. orm hi ber nat e3. H ber nat eTr ansact i onManager" >
<property nane="sessi onFactory" ref="hibernateSessi onFactory"/>

</ bean>

The spring documentation explains how to configure JTA based transaction managers. JTA
configuration is application server specific.

It is quite easy to integrate transactionsin our code. We only have to add a @Transactional annotation
in front of amethod. Spring will start a transaction before the method and commit at the end.

@ransacti onal (propagati on = Propagati on. REQUI RED)
public void updat e(Hedgehog hedgehog) {
hedgehogDao. updat e(hedgehog) ;

}

propagation defines which kind of exception we use.

204

Integration with other technologies

Table 14.1. Transaction types

Type of transaction

Description

REQUIRED

transaction isrequired. If one exist it will be used
else one will be created. Thisisthe default.

SUPPORTS

transactions are supported but won't be started,
If atransaction exist the method runsin this
transaction scope el se the method runs without
transaction scope.

MANDATORY

transaction is required but won't be started, If no
transaction exist an Exception will be thrown.

REQUIRES NEW

will always start a new transaction, If one exists
aready it will be paused. Thisis not supported by
all transaction managers.

NOT_SUPPORTED

method will not inside of atransaction, If one
exists aready it will be paused. Thisis not
supported by all transaction managers.

NEVER Transactions are not supported, If atransaction
exist an exception will be thrown.
NESTED A nested transaction will be started.

Y ou can use the transaction manager
DataSourceT ransactionM anager to achieve this.
Only alimited number of database and JTA
transaction manager supports this configuration.

If a RuntimeException happensinside of our method, Spring will rollback the transaction. Thiswill
not be done if a checked exception happens. Y ou can configure the rollback behaviour for checked
exceptions explicitly. Have alook in the Spring documentation for further informations.

Transaction configuration per class

Y ou can add the @Transactional annotation in front of the class aswell. In this case Spring will add
transaction handling to all public methods. If a method should use a special kind of transaction, you
can overwrite the default with a annotation in front of the method.

Transactions without annotations

In my opinion, the annotation based transaction handling is avery beautiful solution. If you cannot
use annotations because you don’t have the required JDK 5, you have to choose another approach.

In this case we would define transactions in the Spring configuration file, start and commit
transactions explicitly in the source code or use an transaction template. All approaches are described

in the Spring documentation.

14.2. Hibernate and Struts

Y ou can find a simple example application in the project HibernateStruts. The application follows
best practices and the approach can be reused in real projects. The application makes of of Ajax

205

Integration with other technologies

technology, displays alist of hedgehogs, provides paging and allows to create and edit hedgehog
information. | used PostgreSQL but you may replace the database if you like.

| used the following frameworks:

e Struts1.3

Displaytag 1.1 (http://displaytag.sourceforge.net/11/)

Hibernate 3.2 Core und Annotation

Ajaxtags 1.2 (http://ajaxtags.sourceforge.net/)

Prototype Ajax 1.5.0 (http://www.prototypejs.org/)

» Script.aculo.us 1.7.0 (http://script.aculo.us/)

The application demonstrates

* businessand DAO layers

» ageneric DAO implementation

* optimistic locking and dealing with resulting exception

 central Hibernate exception handling

14.2.1. Optimistic locking

Optimistic locking means that when you update an object, Hibernate checks if this object was not
already changed by another user. This approach is described in chapter TODO: Referenz nicht
gefunden. If the data was already changed, Hibernate throws a StaleObjectException. In this case we
have to apply the normal exception handling — rollback transaction, close the session —and display the
user an appropriate error message.

| propose to do this directly in the service class HedgehogServicelmp. Have alook in the method
saveOrUpdateHedgehog. After the exception handling the exception is thrown again to allow
handling in our Struts action method.

The Struts action class HedgehogA ction adds an error message to the request and sends the user back
to the input form. Y ou can test the behaviour by opening two browser windows, editing the same
hedgehog in both windows and than saving them.

In contrast to other RuntimeException which are normally fatal, we can offer the user alittle bit more
comfort, if we handle the StaleObjectException this way. The next chapter explains how to handle
other Hibernate RuntimeExceptions.

14.2.2. Exception handling

If an exception happensit isimportant to rollback a open transaction and to close the Hibernate
session. If we use the CurrentSessionContext (see chapter Session Handling and Transactions

206

http://displaytag.sourceforge.net/11/
http://ajaxtags.sourceforge.net/
http://www.prototypejs.org/
http://script.aculo.us/

Integration with other technologies

Chapter 13, Session and Transaction Handling) the closing of the session is handled by Hibernate, if
we call commit or rollback.

<property nane="current_session_context class">thread</property>

| created a Struts ExceptionHandler, which is called if a RuntimeException happens in Struts. This
exception handler will rollback the transaction and display a general exception page.

First we have to configure the exception handler in the Struts configuration file struts-config.xml.

<gl obal - excepti ons>
<exception type="java.l ang. Runti meExcepti on"
handl er="de. | al i | una. exanpl e. struts. Sever eExcepti onHandl er"
key="errors. severe" path="/error.jsp">
</ excepti on>
</ gl obal - excepti ons>

The class SevereExceptionHandler is my ExceptionHandler rolling back the transaction.

try {

Transaction transaction = I nitSessi onFactory
.getl nstance(). get Current Sessi on().get Transaction();

if (transaction.isActive())
transaction. rol | back();
| og. debug(" Rol | ed back transaction after exception.");

} catch (Runti neException e) {
log.error("Error rolling back transaction");

}

If your database is not available or another exception happens, you will see an error page now. My
example uses the C3P0 connection pool. This pools tries to reach the database a number of times
before throwing an exception. If you test the exception handling by shutting down the database, you
will have to wait a moment before getting the exception page.

207

Part IV. Configuration, Performance,
Validation and Full Text Search

Chapter 15. Hibernate Full Text Search

Luceneis apopular full text search engine. Y ou can index documents, websites or arbitrary other
data. The index can be searched with a API. Hibernate Search integrates L ucene Search with
Hibernate. Entities can be indexed easily and with a special session, you can perform afull text search
for your entities. A lot of databases provides already their own mechanism for full text search. But
those solutions are not portable across databases and Lucene is probably more powerful and flexible
than proprietary solutions.

Let’shave afirst look at code sample before we talk about more details. Y ou can find the full source
code in the project LuceneSearch.

First, we need to configure the Lucene Search. If we use the AnnotationConfiguration to build the
Hibernate session factory, there is only one property to be defined in the hibernate.cfg.xml. It isthe
location where the Lucene index should be stored.

<property nane="hi bernat e. search. defaul t. i ndexBase" >

/[t
</ property>

If you use anormal Configuration to build the session factory, it is required to configure a couple
of event listener. Have alook in the reference documentation of Hibernate Search for more details.
Asitispossible to use XML with an AnnotationConfiguration as well, | propose to use this kind of
configuration even with XML only mappings.

Sessi onFactory factory = new Configuration().configure().buil dSessionFactory()

In the next step, the entities which should be searched have to be annotated.

@ntity
@ ndexed
public class Article {
@d
@ocunent | d
@cener at edVal ue(strategy = CGenerationType. AUTO
private |Integer id;

@i el d(index = I ndex. UN TOKENI ZED, store = Store. YES)
private String title;

@Field
private String content;
/1 getter setter nethods are m ssing

@I ndexed marks an entity to be indexed, @Documentld is required and defines how a document is
identified in the Lucene index. @Field specifies that afield should be indexed. In the sample you can
find two different settings for @Field.

@Field with default values

The content is indexed using the standard analyser. This analyser splits the text into words, transform
them to lower case, removes characters like ;. and removes a couple of very frequent English words
likea, is,in

209

Hibernate Full Text Search

Only the indexed content will be stored in the Lucene index but not the content itself. If you use atool
like Luke to have alook at your Lucene index, you cannot see the original content.

Thetitleis not tokenized or transformed. @Field(index = Index.UN_TOKENIZED, store =
Sore.YES

As a consequence you cannot search individual words of the title, but we can search for the precise
title or do awild card search —find all titles starting with Foo.

In contrast to the field content, the title is stored in the index (store = Store.YES) and we can seeit if
we browse the index using Luke. | will tell you more about Luke at the end.

So, our entity isindexed and we can start to do full text searchesin Hibernate. A Lucene search
consists of three steps

» Creating a search session
» Creating a Lucene query

* executing the query.

A code sample.

Sessi on session = SessionFactoryUtil.get Factory().get Current Session();
/1 create a full text session

Ful | Text Sessi on f Sessi on = Search. get Ful | Text Sessi on(sessi on);

f Sessi on. begi nTransacti on();

/1 create a luceneQuery with a parser

QueryPar ser parser = new QueryParser("title", new StandardAnal yzer());
Query |l ucenceQuery nul | ;

try {
| ucenceQuery = parser. parse("content: hi bernate");

} catch (ParseException e) {
t hrow new Runti meExcepti on("Cannot search with query string",e);

}

/1 execute the query

List<Article> articles = fSession.createFull Text Query(lucenceQuery, Article.class)
ist();

for (Article article : articles) {
Systemout. println(article);

}

f Sessi on. get Transaction().commit();

A search session is created from an open Hibernate session. Basically it isjust awrapper adding the
search specific methods to the session. We use a StandardAnalyser to analyse the search string, which
isthe same\ used to index the content field. Finally we execute the full text query.

Thefield title was not tokenized. A search for title needs to use a different approach. You can usea
precise search

List<Article> articles = fSession.createFul | Text Query(
new Ter mQuery(new Term("title", "About Hibernate")), Article.class).list();
for (Article article : articles) {

210

Hibernate Full Text Search

Systemout.println(article);

}
or awildcard search

List<Article> articles = fSession.createFul | Text Query(
new W dcardQuery(new Term("title", "About*")), Article.class).list();
for (Article article : articles) {
Systemout.println(article);

}

Y ou can adapt the indexing and the search string analysing to your needs. For example we could
specify that the indexing of the field title goes through a toL owerCase filter. Emanuel Bernard has
demonstrated a couple of new features on the Devoxx conference. Y ou can use word stemming — run,
runner, running \ {} - to find words with the same stem, phonetic searches with Soundex or Metaphone
algorithm to find words with a close sound or approximate searches with ngram search. | will cover
more of this approachesin the next updates.

Luke let you browse your index and perform searching onit. It is very useful to test your searches or
debug a problem.

http://www.getopt.org/luke/

211

http://www.getopt.org/luke/

Chapter 16. Performance Tuning

Thereisaincredible choice of options to improve the performance of Hibernate based application.
This chapter describes quite a number of them. Each part starts with a small use case describing the
problem or requirement. After thisyou will find a detailed solution how to solve the problem.

Source code for the samples can be found in the project mapping-examples-annotation. Have alook in
the package de.laliluna.other.query.

Some of the use cases make use of the following class structure:

Author Eook
0"
0.1 .*
Cigar Chapter

16.1. Analysing performance problem

Scenario

If adialog istoo slow, there might happen alot of unexpected queries. This can be caused by eager
loading of relations or you might just reuse the queries of another dialog. Did you know for example
that 1:1 and n:1 relations are loaded eagerly, if you use annotations whereas XML mappings are lazy
by default.

Solution

The best approach isto analyse what is happening behind the scenes. Hibernate offers two
configuration settings to print the generated SQL. Thefirst oneis a property in the hibernate.cfg.xml

<property nane="show sql ">t rue</property>

If it is set to true, the SQL statements will be printed to the console. Y ou will not see any timestamps,
thisiswhy | prefer the second approach, which uses the normal logging output.

logs the SQ statenents
| og4j . | ogger . org. hi ber nat e. SQL.=debug

Some nore useful | oggings

Logs SQ. statenents for id generation

| og4j . | ogger . org. hi bernat e. i d=i nfo

Logs the JDBC- Paraneter which are passed to a query (very verboose)
| og4j .1 ogger.org. hi bernate.type=trace

Logs cache related activities

| og4j . |1 ogger . or g. hi ber nat e. cache=debug

There are more useful settings in the Hibernate configuration hibernate.cfg.xml

212

Performance Tuning

The property format_sqgl will nicely format the SQL instead of printing it on asingleline.
<property name="format_sql ">t rue</property>

The property use_sgl_comments adds a comment to each SQL explaining why it was created. It let’s
you identity if aHQL statement, lazy loading or a criteria query led to the statement.

<property nane="use_sqgl _comments">true</property>
Another good source for information are the statistics of Hibernate.

Y ou can enable the statistics in the Hibernate configuration or programmatically. The statistics class
offers a number methods to analyse what has happened. Here a quick example:

Statistics statistics = sessionFactory.getStatistics();
statistics.setStatisticsEnabl ed(true);
statistics.logSummary();

Furthermore you can call getStatistics on a session as well to gather information about it.

16.2. Iterating through relations — batches

Scenario

The application retrieves all books for an author. It iterates through all chapters and counts the number
of characters. An aternative scenario could go through orders of a customer and check if one of the
order position can aready be delivered.

The query for the books:

Li st <Book> books = sessi on. creat eQuery(
“fromBook b where b.nane |like ?").setString(0, "Java%).list();

The following code printing the books will create one SQL query per book to initialize the chapters.
We get 1+n queriesin total. One for the books and n for the chapters, if we have n books.

for (Book book : books) {
int total Length = O;
for (Chapter chapter : book.get Chapters()) {
total Length += (chapter.getContent() != null ?
chapter.get Content ().length() : 0);

}
log.info("Length of all chapters: " + total Length);

}
Solution

One way to improve thisisto define that Hibernate |oads the chaptersin batches. Here is the mapping:

Annotations.

@neToMany(cascade = CascadeType. ALL)

@oi nCol um(nul | abl e = fal se)

@3at chSi ze(si ze = 4)

private Set <Chapter> chapters = new HashSet <Chapter>();

XML.

213

Performance Tuning

<set nane="chapt ers" batch-size="4">
<key col um="book i d"></key>
<one-t o- many/ >

</set >

When iterating through 10 books, Hibernate will load the chapters for the first four, the next four and
the last two books together in asingle query. Thisis possible because the java.util.List returned by
Hibernate is bewitched. Take the sample code of this chapter and play around with the batchsize in the
method efficientBatchSizeForRel ation in the class PerformanceTest.

The best size of the batch size is the number of entries you print normally on the screen. If you print a
book and print only the first 10 chapters, then this could be your batch size.

It is possible to set a default for all relations in the Hibernate configuration.
<property nane="default batch_fetch_size">4</property>

Use this property with care. If you print on most screens the first 5 entries from a collection, a batch
size of 100 is pretty useless. The default should be very low. Keep in mind that a size of 2 reduces the
gueries already by 50 % and 4 by 75 %.

16.3. Iterating through relations —
subqueries

Scenario
Same scenario again, this time we will load all chaptersin one step.
Solution

The property subselect fetching defines that Hibernate should load all chapters of al books, when the
first collection is being accessed.

@neToMany(cascade = CascadeType. ALL)

@oi nCol um(nul | abl e = fal se)

@-et ch(Fet chMbde. SUBSELECT)

private Set <Chapter> chapters = new HashSet <Chapt er>();

Thisis dightly different than the batch size, which loads only chapters for a couple of books. Y ou
might consider to use batch fetching if you want to load the chapters only for a couple of books, where
as subselect fetching is useful if you always want to load the chapters for all books of the result list.
There are less use cases for subselect fetching asit isto aggressive for most situations.

Y ou can play around with subselect fetching in the method efficientBatchS zeForRelation in the class
PerformanceTest. Just uncomment the @Fetch annotation in the book class.

16.4. Iterating through relations — single
query

Scenario

214

Performance Tuning

Thereis till the same problem but we solve it with adifferent query.
Solution

With join fetch we can tell Hibernate to load associations immediately. Hibernate will use asingle
SQL select which joins the chapters to the book table.

Li st <Book> books = sessi on. creat eQuer y(
"select b fromBook b left join fetch b.chapters where b.name |ike ?")
.setString(0, "Java%)
.setResul t Transformer(Criteria. Dl STINCT_ROOT_ENTITY). list();

The same with a criteria query:

Li st <Book> books = session.createCriteria(Book.class)
. set Fet chMode(" chapt ers", org. hi ber nat e. Fet chMode. JO N)
.add(Restrictions.like("nane", "Java", MatchMde. START))
.set Resul t Transfornmer(Criteria. Dl STINCT_ROOT_ENTITY).list();

The performance is very good but we must be aware that we will load all chapters into memory.
Finally, don’'t use join fetch with multiple collections, you will create arapidly growing Cartesian
product. A join will combine all possible combinations. Let’s do a SQL join on data where every book
have two chapters and two comments.

select * from book b left join chapters ¢ on b.id=c.book_id left join comment cm on b.id=cm.book _id

Book id Other book Chapter id Other chapter |Commentid |Other
columns columns comment
columns
1 1 1
1 1 2
1 2 1
1 2 2
16.5. Reporting queries

Scenario

For areport you need to print the name of the author, the number of books he wrote and the total
of chaptersin his books. If your dataset consists of 10 authors with 10 books each and each book
having 10 chapters, you will end up with 1000 objects in memory. The report requires only 10
javalang.String and 20 java.lang.Integer.

Solution

The problem can easily be solved with areporting query. The following query returns alist of Object
arraysinstead of entitys.

Li st <Qoj ect[] > aut hor Report Cbj ects = sessi on. creat eQuery("sel ect a.nanme, " +
“count (b) as total Books, count(c) as total Chapters " +
“from Author a join a.books b join b.chapters c group by a.nanme")
dist();

215

Performance Tuning

for (Object[] objects : authorReporthjects) {
log.info(String.format ("Report: Author %, total books %l, total chapters %",
obj ects[0], objects[1l], objects[2]));
}

An aternative isto fill aJava class dynamically. If you use HQL you might call the

constructor with a corresponding arguments or with both HQL and criteria you can use an
AliasToBeanResultTransformer. In that case the Java class needs to have the same properties as the
column names of your query.

Constructor approach.

Li st <Aut hor Report > aut hor Reports = sessi on. cr eat eQuer y(
"sel ect new de.laliluna.other. query. Aut hor Report(a.id, a.nane, " +
"count (b), count(c)) " +
"fromAuthor a join a.books b join b.chapters ¢ group by a.id, a.nane")
dist();

for (AuthorReport authorReport : authorReports) {
| 0og. i nf o(aut hor Report);

}
AliasToBeanResultTransformer approach.

Li st <Aut hor Report > aut hor Reports = sessi on. creat eQuer y(
"sel ect a.nane as nane, count(b) as total Books, count(c) as total Chapters " +
"fromAuthor a join a.books b join b.chapters ¢ group by a.nane")
. set Resul t Tr ansf or ner (new Al i asToBeanResul t Tr ansf or mer (Aut hor Report . cl ass))
dist();
for (AuthorReport authorReport : authorReports) {
| 0g. i nf o(aut hor Report);

}

16.6. Iterating through large resultsets

Scenario

Our application should export all books and a summary of the chaptersin XML format. We have a
total of 100,000 books with 15 chapter each. It isjust impossible to load al the entities into memory.

Solution

Instead of anormal query we are going to use a ScrollableResults. It will load the data step by step as
we are iterating through the result. From time to time, we will call session.clear to remove the entities
from the session. This allows the garbage collection to take them away and will limit our memory
consumption.

Scrol | abl eResults results = session. createQuery(
"select b fromBook b left join fetch b.chapters")
.scrol |l (Scrol | Mode. FORWARD ONLY) ;

while (results.next()) {

Book book = (Book) results.get(0);

/* display entities and collection entries in the session */
| og. debug(session.getStatistics().toString());

/1 create XML for book

for (Chapter chapter : book.get Chapters()) {

216

Performance Tuning

chapt er. get Cont ent () ;
/I create XM. for chapter

}

session. cl ear ();

}

results.close();

For debugging purpose | am printing the number of entities in the session using
session.getStatistics().toString().

Pitfall warning

If you change entities, you must call session.flush before calling session.clear. Clear clears you
session and all open SQL statements not yet sent to the database will be sent as well.

16.7. Caches
16.7.1. General

The purpose of a cache isto reduce access to the database.

There are two kinds of cachesin a Hibernate application. The Hibernate session is the first one, the
second one can be used optionally.

The Hibernate session is atransactional cache, i.e. it shows the changes a user has aready flushed
within an open transaction. As a session belongs to a unigque user, theses changes are not propagated
to other sessions. | remind you that a session is not thread-safe, do not share it across threads!

The second level cacheis shared across a Java virtual machine instance or, if you use clustering, it
can even be shared across multiple servers across a network. All your sessions share this cache. The
second level cache normally contains only committed data. (except for transaction caches, where you
can configure the isolation level)

A cache does not reference your objects, so changes to the objects will not destroy the cache. A cache
resembles more a Map having a combination of id and class as key and an array as value, where the
array holds all thefield values.

Server Cne Server Twao

Session Session

replicate cache in the cluster
Second Level Cache Second Level Cache *’é

e =

Key Field 1 Field 2 Field 3
de.lailuna.Devel oper#67&Karl 1234 77.55
delaliluna.Developer #68tkter 123 12.22

217

Performance Tuning

Thisis of course asimplification. A cache does also handle information about the creation time, last
access time, change time and some very effective search algorithms.,

Aspects to consider

A cache holds objects to prevent database queries. A cacheis not aware of changes which bypass
Hibernate for example queriesissued by JDBC or from other non Java applications.

Situations where a cache is useful
* The samedatais queried repeatedly
» Amount of datais relative small as compared to the available memory
* Queries are dow and the database is on the network
* All applications use Hibernate and the same cache
Choosing the cache mode
There are four cache modes available.
* read-write
* read-only
* nonstrict-read-write

* transactional

Readonly
By far the fasted cache is read-only but if you specify thisin a class you cannot save or update
any entries. You may consider using special mappings only to display datain combination with a
readonly cache. Thiswould push the performance to the limit.

Read-write
Thisis probably the most commonly used setting. As indicated by the Hibernate reference this
cache cannot be used if you use the transaction isolation level serializable, which is probably used
only in very rare cases.

Nonstrict-read-write
This cache mode does not guaranty strict transaction isolation. An update to the same dataset
happens rarely by two concurrent threads at the same moment. Thisis true when your application
uses optimistic locking with short transactions and is not heavily stressed by simultaneous
transactions to the same data. When a transaction takes 50 milli-seconds you must have two
threads accessing the same data at the same moment.

Transactional
Transactional cache modes are fully supported by the cache and you can configure the isolation
level of the cache. Most caches do not support this behaviour.

218

Performance Tuning

Standard cache
The standard cache isfilled when you load any data with methods like

» session.load

session.get

session.createQuery(...).list()

The cache is used when Hibernate has to create an instance from a given id. Thisis done when you
use for example

* session.load
* session.get
* traversing arelation which isnot yet initialised

Y ou can configure the size of the cache and when items should expire. Expiring is useful when you
update data with other applications from time to time but you can accept a delay during which the user
sees stale data.

Y ou do not have to set atimeout when your application is the only one accessing the database.

Y ou can evict objects from the cache using the session factory (not the session itself). It provides
methods like evict and others to deal with datain the cache.

Using the cache

Configure the cache in your hibernate.cfg.xml or in the hibernate.properties.

<property nane="cache. provi der_cl ass">
or g. hi ber nat e. cache. EnCachePr ovi der
</ property>

Add a configuration file for your selected cache. Y ou can find more detailed information about each
cachein the following chapters. Here is a short example.

<cache nane="myCache"
maxEl ement s| nMenor y="6000"
eternal ="true"
ti meTol dl eSeconds=" 0"
ti meToLi veSeconds=" 0"
over f | owToDi sk="t rue"
/>

Add the cache tag to your class and to all relations you want to cache. Y ou can specify a cache region
to use a special configuration. For example | used the myCache configuration but you can also leave
out the region definition in order to use the default configuration.

<cl ass nane="Devel oper" tabl e="t devel oper">
<cache usage="read-only" region="nmyCache" />

219

Performance Tuning

<l i st name="conputers" cascade="all">
<cache usage="read-only" region="myCache" />

<key col um="devel oper _i d* not-null="true"></key>
<list-index colum="1istindex"></list-index>
<one-to-many cl ass="Conputer" />
</list>
That'sit.
Query cache

A query cache contains the object ids found by a query. The query and the parameters are used as
key. As a consequence a query cacheis only useful when you have queries with the same parameters
issued regularly. When atable is updated, all cached queries touching the table are evicted from the
cache as they are considered to be outdated.

To sum up, aquery cacheis useful when you have alot of identical selects compared to the number
of updates. Typical applications are content management systems, Internet forums with alot of read
access etc.

To use the query cache you must do at least the following:

In the hibernate.properties or hibernate.cfg.xml add the property

<property nane="hi bernat e. cache. use_query_cache" >t rue</ property>

In your query set CacheAbleto true

List result = session.createQuery(
"from Conmputer ¢ where c.nanme |ike ? order by c.name desc, c.id asc")
.setString(0, param
.set Cacheabl e(true).list();

Y ou can a'so specify a special cache region used for your query using setCacheRegion
Li st result = session.createQuery(
"from Conputer ¢ where c.nane |ike ? order by c.nane desc, c.id asc")

.set String(0, param
. set Cacheabl e(true). set CacheRegi on(“nmyQueryCache”) . list();

That'sit.

As opposed to the table in the Hibernate reference all of the following cache providers support query
caching.

Test all caches
We provided an example application named TestCache. It will output access times to the data.

In order to use the test, generate test data first. Adapt the hibernate.cfg.xml to suit your database and
uncomment the setupTest method in the class TestMain to generate random data entries.

Have alook at the class TestMain to comment or uncomment the tests you want to run and to specify
which mapping to load. We have mappings for all supported cache modes. A cache provider does not
support every mode.

220

Performance Tuning

Y ou can configure the number of threads for running two kinds of tests. The first uses session.get to
randomly select entries. The other test queries data with random parameters. Both tests log how the
access times are changing by the time when your cache isfilled. Run a no cache test to compare the
results.

In the hibernate.cfg.xml you can configure the cache provider. Configuration files for any of the
following caches can be found in the project as well. Read in the following descriptions to learn more
about needed libraries.

16.7.2. EH Cache

EH cache is the standard cache for Hibernate. It can be used as a distributed cache or as cache for JSP
content. Detailed information can be found on the EH Cache website at

http://ehcache.sourceforge.net/documentation/

The configuration is done in the ehcache.xml file:

<ehcache>
<l-- Sets the path to the directory where cache .data files are created.

If the path is a Java System Property it is replaced by
its value in the running VM

The foll owi ng properties are transl ated:

user. hone - User's home directory

user.dir - User's current working directory

java.io.tnpdir - Default tenp file path -->
<di skStore path="java.io.tnpdir"/>

<cache nane="nmyCache"
maxEl enent s| nMenor y="6000"
et ernal ="t rue"
ti meTol dl eSeconds=" 0"
ti meToLi veSeconds=" 0"
over f | owToDi sk="f al se"
/>

<cache nane="net. sf. hi bernat e. cache. St andar dQuer yCache"
maxEl enent sl nMenor y="20"
et ernal ="f al se"
ti meToLi veSeconds="240"
over f | owToDi sk="f al se"/>

<cache nane="net. sf. hi ber nat e. cache. Updat eTi nest anpsCache"
maxEl enent s| nMenor y="5000"
eternal ="true"
over f| owToDi sk="f al se"/>

<def aul t Cache
maxEl enent s| nMenor y="7000"
et ernal ="f al se"
ti meTol dl eSeconds="180"
ti meToLi veSeconds="180"
over f | owToDi sk="f al se"
/>

221

http://ehcache.sourceforge.net/documentation/

Performance Tuning

</ ehcache>

Cache provider in the hibernate.cfg.xml:

<property nane="cache. provi der_cl ass" >
or g. hi ber nat e. cache. EhCachePr ovi der
</ property>

Needed libraries:

» eh-cachejar
Supported cache modes:
* read-write
 read-only

e nonstrict-read-write

16.7.3. OS Cache

OS Cache can also be used as distributed cache or as cache for JSP content. Clustering using JM S and
jgroupsis supported. Detailed information can be found at http://www.opensymphony.com/oscache/.

Cache provider:

<property nanme="cache. provi der _cl ass" >
or g. hi ber nat e. cache. OSCachePr ovi der

</ property>

Needed libraries:

» oscachejar

Supported cache modes:

* read-write

* read-only

* nonstrict-read-write

16.7.4. Swarmcache

The swarm cache can be used as distributed cash aswell. It uses jgroups for the clustering. Further
information can be found at http://swarmcache.sourceforge.net/.

Cache provider:

<property nane="cache. provi der_cl ass" >
or g. hi ber nat e. cache. Swar mCachePr ovi der
</ property>

Needed libraries:

222

http://www.opensymphony.com/oscache/
http://swarmcache.sourceforge.net/

Performance Tuning

e swarmcachejar

* jgroups-al library which you must download from the swarmcache website.
Supported cache modes:

* nonstrict-read-write

JBoss Treecache

JBossisthe only transactional cachein our list. It supports clustering as well. Further information can
be found at http://www.jboss.org/products/jbosscache

Y ou may consider using the treecache if you use Hibernate on JBoss.

Cache provider:

<property nane="cache. provi der_cl ass" >
or g. hi ber nat e. cache. Tr eeCachePr ovi der

</ property>

Needed librariesto run in ajava application:

* jboss-cachejar

jboss-system.jar

jboss-jmx.jar

concurrent.jar

jboss-common.jar
* jgroup library deliverd by Hibernate

For aweb application deployed on a JBoss application server you will probably not need any of these
libraries as they are already contained in atypical JBossinstallation.

Supported cache modes:

 transactional

16.7.5. Bypass a cache

When you use LockMode.Read the cache is bypassed and the values are read directly from the
database. Y ou can specify the LockMode when you use session.lock or session.load.

223

http://www.jboss.org/products/jbosscache

Chapter 17. Configuration

17.1. Connection Pools

17.1.1. Built-in connection pool

If you do not configure a connection pool yourself, the built-in connection pool is used. Of course,

it usually does work when you develop, but in some rare cases it does not work properly. So just
don’t useit. When you test your Hibernate layer without an application server use C3P0 or DBCP.
Normally it is agood ideato use the connection pool provided by your application server if you only
run tests within the application server. Y ou may use C3P0 or DBCP also within an application server
but there is normally no reason to deploy any further libraries when the functionality is already there.

C3PO

Y ou can configure aminimal pool in Hibernate just by adding the following settings:
<property nanme="c3p0. max_si ze" >4</ property>

<property nane="c3p0. m n_si ze">2</ property>
<property nane="c3p0.ti meout">1800</ property>

Warning

Do not use the following tag in combination with this connection pool.
<property nane="hi ber nat e. hbn2ddl . aut 0" >updat e</ pr opert y>

The schema generation will close connections in away the Pool cannot cope with.

Some optional settings are

<property nane="c3p0. acquire_increnent">1</property>

<property nane="c3p0.idl e test period">100</property><!-- seconds -->
<property nane="c3p0. max_st at enent s" >0</ pr opert y>

<property nane="c3p0. Acqui r eRet ryDel ay">1001</ pr operty>

<property nane="c3p0. Acquir eRetryAttenpts">5</property>

<property nane="c3p0. MaxSt at enent sPer Connect i on" >0</ pr operty>

Documentation can be found in the download package. The libraries are included in the Hibernate
dialogue, but I recommend to download the most current version from http://sourceforge.net/projects/
c3p0

Thelibrary needed is

* ¢c3p0....some version.jar

DBCP

DBCP s not included in the Hibernate 3 distribution any more. If you want to use it have alook at
http://wiki.apache.org/jakarta-commons/DBCP/Hibernate to get a custom connection provider. This
connection provider must be specified in the hibernate.cfg.xml

224

http://sourceforge.net/projects/c3p0
http://sourceforge.net/projects/c3p0
http://wiki.apache.org/jakarta-commons/DBCP/Hibernate

Configuration

<property nane="connecti on. provi der_cl ass" >
or g. hi ber nat e. connect i on. DBCPConnect i onPr ovi der
</ property>

Download and documentation can be found at http://jakarta.apache.org/commons/dbcp/
DBCP depends on two libraries, which are provided by jakarta as well:

» commons-dbcp

» commons-pool

To configure DBCP add the following properties to your hibernate.cfg.xml

<property nane="connecti on. provi der_cl ass" >
or g. hi ber nat e. connect i on. DBCPConnect i onPr ovi der
</ property>

<property nane="dbcp. maxActi ve">17</property>

<property nane="dbcp. max\Wai t " >120000</ pr opert y>

<property nane="dbcp. maxl dl e" >3</ property>

<l-- Action to take in case of an exhausted DBCP connection poo

(0 =fail, 1 = block, 2= grow) -->

<property nane="dbcp. whenExhaust edActi on">1</ property>
<property nane="dbcp. ps. maxActi ve" >150</ pr opert y>
<property nane="dbcp. ps. whenExhaust edActi on" >2</ pr opert y>
<property nane="dbcp. ps. maxWai t " >120000</ pr operty>
<property nane="dbcp. ps. max| dl e" >10</ pr operty>
<property nane="dbcp. val i dati onQuery" >sel ect 1</ property>
<property nane="dbcp.test OnBorrow'>true</property>
<property nane="dbcp.test OnRet ur n">f al se</ property>

17.1.2. INDI

JNDI isthe Java Naming and Directory Interface. It allows to bind resources to names. Y ou can bind
Java classes like Data sources, session factories or other to INDI and retrieve them using their name.

Y ou have to setup the INDI datasource in your application server or servlet engine.

Hereis an extract of the standalone.xml of a JBoss application server.

<dat asour ce j ndi - name="j ava:/j boss/ dat asour ces/ pl ayDS" pool - nane="pl ayDS" >
<connection-url >j dbc: postgresql ://1 ocal host/ pl ay</ connecti on-url >
<driver>post gresqgl </ dri ver>
<security>
<user - name>post gr es</ user - nane>
<passwor d>p</ passwor d>
</security>
</ dat asour ce>

In your Hibernate configuration, the INDI is referenced.

<property nane="connecti on. datasource">j ava: /j boss/ dat asour ces/ pl ayDS</ pr operty>

225

http://jakarta.apache.org/commons/dbcp/

Appendix A. Appendix
A.l. Annotation Reference

The reference contains a description of many Hibernate annotations.

Default values of annotations

If you want to find out supported attributes you may have alook into the source code.
In Eclipse you can press CTRL (alias STRG) and click on a class name to display the
attached source code. The first time you make this, you have to define where the source
code of the class can be found.

Below you can find the source code for the javax.per sistence. Table annotation.

Y ou can download the source code for Hibernate annotations at http://www.hibernate.org or use the
Maven repository of JBoss. https://repository.jboss.org/nexus/index.html

~

L B T T R S R T R B R N S R . R N

The contents of this file are subject to the terns

of the Common Devel opnent and Distribution License

(the License). You may not use this file except in
conpliance with the License.

You can obtain a copy of the license at

https://gl assfish. dev.java. net/public/CDDLv1l.0.htm or
gl assfi sh/ bootstrap/| egal /CDDLvV1. 0.t xt .

See the License for the specific |anguage governi ng
permni ssions and |initations under the License.

When di stributing Covered Code, include this CDDL
Header Notice in each file and include the License file
at gl assfish/bootstrap/l egal / CDDLv1. 0. t xt .

| f applicable, add the foll owi ng bel ow the CDDL Header
with the fields enclosed by brackets [] replaced by

you own identifying information

"Portions Copyrighted [year] [nanme of copyright owner]"

Copyri ght 2006 Sun M crosystens, Inc. Al rights reserved.
/
package j avax. persi stence;

i mport java.l ang. annot ati on. Tar get ;

i mport java.l ang. annot ati on. Retention

i mport static java.lang.annotation. El enment Type. TYPE

i mport static java.lang.annotation. Retenti onPolicy. RUNTI ME

@rar get (TYPE)
@ret ent i on(RUNTI ME)

public @nterface Table {
String name() default "";
String catal og() default "";
String schema() default "";
Uni queConstrai nt[] uni queConstraints() default {};

226

http://www.hibernate.org
https://repository.jboss.org/nexus/index.html

Appendix

}

A.l.1. Entity and table annotation

@j avax.persistence.Entity
Specifiesthat a class is used by Hibernate as entity

name="EntityName"
Optional, name which can be used in queries, default: class name

Sample.
@ntity

public class Tiger inplenments Serializable {
@or g.hibernate.annotations.Entity
Hibernate extension, must be used in addition to @javax.persistence.Entity

mutable=true,
if false then the entity istreated as read only, default istrue

dynamiclnsert=false,
if true then only changed columns will be included in the insert statement. The default isfalse
which is better in most cases as the same prepared statement can be reused all the time.

dynamicUpdate=false,
if true then only changed columns will be included in the update statement. The default isfalse
which is better in most cases as the same prepared statement can be reused all the time.

selectBeforeUpdate=fal se,
Makes a select and compares the data and will only create an update if the data was changed.
Default isfalse.

polymorphism=PolymorphismType.lMPLICIT,
Selects of parent classesin ainheritance hierarchy can return all entities as instance of the
gueried class (explicit polymorphism) or asinstance of the classit should actually be (implicit
polymorphism)

persister="",
Defaultis™". It allows to modify how the datais stored. It israrely changed but allows for
exampleto store datain JNDI.

optimisticL ock= OptimisticLockType.VERSION
Defines how optimistic locking works. Default is a version column but you can compare all
columns (OptimisticLockType.ALL) or just the changed columns (OptimisticLockType.DIRTY)
to verify if arow has been updated by someone else.

@javax.persistence.Table

Optional, specifies database table a class is mapped.

227

Appendix

name = "tableName",
Optional, name of the database table to which the class is mapped, default: class name

catalog = "catalogName",
Optional, name of the database catalogue (only supported by some databases), default: name,
defined in the Hibernate configuration

schema = "dbSchemaName",
Optional, name of database schema (only supported by some databases), default: name, defined in
the Hibernate configuration

uniqueConstraints = { @UniqueConstraint(columnNames = { "databaseColumn}",
“anotherColumn” }) }
Optional, no influence on Hibernate but on the table generation. It will generate unique key
constraints.

@or g.hibernate.annotations. Table

Hibernate extension to EJB 3, generates indexes, when generating tables. Can be used with the
annotations @javax.per sistence. Table and @javax.persistence.SecondaryTable

appliesTo = "tableName",
database table name

indexes = { @Index(name = "forest_idx", columnNames = {"indexedColumn"}) }
one or more indexes

@or g.hibernate.annotations.| ndex
Hibernate extension to EJB 3, specifies an index

name = "forestidx",
Name of the index

columnNames = {"colA","colB"}
Database column names which are included in the index

Sample.

@ntity()

@ avax. persi st ence. Tabl e(nane = "t abl eNane",

uni queConstrai nts = { @hni queConstrai nt (col uimNames = { "uni que_colum" }) })
@r g. hi ber nat e. annot at i ons. Tabl e(appli esTo = "t abl eNane",

i ndexes = { @ndex(nane = "forestidx", columNanes = { "indexedcolum" }) })

public class Garden i nplenments Serializable {
@javax.persistence.SecondaryTable

Map one bean to two tables. Y ou specify for a column, that it belongs to the secondary tables (-
@Column(table="secondaryTable")

name = "tableName",
Required, specifies the name of the database table to which the class is mapped.

228

Appendix

catalog = "catalogName",
Optional, specifies the catal og catal ogue name (only support by some databases), default: name,
defined in the Hibernate configuration..

schema = "dbSchemaName",
Optional, specifies the schema name (only support by some databases), default: name, defined in
the Hibernate configuration.

pkJoinColumns = { @PrimaryKeyJoinColumn(name = "id", referencedColumnName = "id",
columnDefinition = "int4") }
One or more PrimaryKeyJoinColumn to define how the tables are mapped.

@j avax.persistence.UniqueConstraint

Specifies aunique key constraint. This information is used when Hibernate generates tables.

columnNames = { "databaseColumnName}", “anotherColumn” }
Required, specifies the table column names.

A.1l.2. Primary key annotations

Source code for examples can be found in the project mapping-exampl es-annotation package
deldiluna.primarykey.

@javax.persistence.ld

Specifies that an attribute belongs to the primary key. Is applied to all primary key attributes.
@javax.persistence.GeneratedValue

Specifies that the value is generated by a sequence, increment, ...

strategy=GenerationType.SEQUENCE,
Default: GenerationType. AUTO (selects generator depending on the database
GenerationType.SEQUENCE uses a sequence, default name is hibernate_seq, (Oracle PostgreSql
and other) GenerationType. TABLE uses atable to store the latest primary key value (al
databases) GenerationType.lDENTITY specia column table (MS SQL and other)

generator="generatorName"
Optional: References the generator which can be defined in front of the class or field.
Default: Name of the default provider, depends on the generation type (e.g. SEQUENCE uses
hibernate_seq as sequence.

Sample.
@ntity

public class Cheetah inplenents Serializable {
@d
@cener at edVal ue(strat egy=CGener ati onType. AUTO)
private Integer id;

@ntity

public class Tiger inplenments Serializable {

229

Appendix

@d

@abl eGener at or (nane = "puna_gen", table="primary_keys")

@zener at edVal ue(strategy = Cenerati onType. TABLE, generator = "puma_gen")
private |Integer id;

@javax.persistence.ldClass
Specifies a composite primary key, i.e. akey consisting of multiple columns

value=SpottedTurtleld.class
the class which is used for the primary key. It must have a column for each @Id column.

Sample.

@ dd ass(SpottedTurtl el d. cl ass)
public class SpottedTurtle inplenments Serializable {
@d
private String |ocation;
@d
private String favoriteSal ad;

@javax.persistence.Embeddedid

Specifies a composite primary key, i.e. akey consisting of multiple columns. As opposed to 1dClass
the fields are not included in the class, but only in the primary key.

Sample.

@ntity
public class BoxTurtle inplenents Serializable {

@nbeddedl d
private BoxTurtleld id;

@javax.per sistence.SequenceGener ator

Specifies a generator which can be referenced from @GeneratedValue annotation. ItisaHiLo
algorithm using a database sequence.

name="generatorName”,
name, which can be referenced from @GeneratedV alue

sequenceName="dbSequenceName”,
optional, database sequence name, default: hibernate id seq

initialValue=50,
when the sequence is generated, defines the initial value, default: 1

alocationSize=1
default: 50, The SequenceGenerator isin fact aHiLo sequence generator. A valueisretrieved
from a sequence, then the generator creates an allocationSize number of unique primary keys.
With an allocation size of 5 you can create 5 entities and need only to retrieve one time the
sequence value. Generators should be global but Hibernate has an implementation bug here. If
you share a sequence across a number of generators, the generated id will frequently jump by the
allocation size instead of incrementing. Either use one generator per class or set the allocationSize

230

Appendix

to 1. If you insert lots of entities, for example during an import job, an allocationSize of 50, will
save 49 sequence database queries per 50 inserts. This could improve performance by nearly 100
%.

Sample.

@ntity
@equenceCener at or (nane = "puma_seq", sequenceNane = "punma_id seq")
public class Puma inplenents Serializable {

@javax.persistence. TableGenerator

Specifies a generator which can be referenced from @GeneratedV alue annotation. It isaHiLo
algorithm using a database table.

name="generatorName”,
name, which can be referenced from @GeneratedVaue

table="databaseTable”,
table, which stores the last primary key value

catalog="databaseCatalog”,
database catalog, qualifier for table (only supported by some databases)

schema="schemaName”,
database schema, qualifier for table (only supported by some databases)

pkColumnName=""
primary key column name identifying the generator of aclass, default: sequence_name

valueColumnName=""
column holding the next hi value, default: sequence_name

pkColumnValue
primary key value, default: name of the classinitialVaue: default: O allocationSize: default: 50

uniqueConstrai nts={ @UniqueConstraint(columnNames={"col_A, col_B"})}
Optional, no influence on Hibernate but on the table generation. 1t will generate unique key
constraints.

Sample.

@d

@abl eGener at or (nane = "puna_gen", table="primary_keys")

@zxner at edVal ue(strategy = Cenerati onType. TABLE, generator = "puma_gen")
private |Integer id;

@or g.hibernate.annotations.GenericGener ator

Hibernate specific generator. It references the id strategies of Hibernate Specifies a generator which
can be referenced from @GeneratedV alue annotation.

name="generatorName”’,
name, which can be referenced from @GeneratedV alue

231

Appendix

strategy = "seghilo”,
The strategies are explained in chapter . Can be any of the following identity, sequence, seghilo,
guid, native, select, hilo, assigned, foreign, uuid, increment

parameters = { @Parameter(name ="max_lo", value="5") }
array of parameters. Each parameter has a name and a value.

Sample.

@d

@z=eneri cGenerator (nane = "aName", strategy = "seqghil 0",
paraneters = { @Paraneter(nane = "max_| 0", value = "5") })

@zener at edVal ue(generat or = "aNanme")

private |Integer id;

A.1.3. Column annotations

Tip: Often you do not need an annotation for your columns. By default all columns are mapped and
the column name is the field name. Specify an annotation, if you have a special column (date, enum,
...) or if the defaults do not suit your needs.

@javax.persistence.Column
Can be used to specify details for a column.

name="full_described_field",
database column name

unique=false,
If set to true, generates a unique key constraint, if the table is generated.

nullable=true,
If set to false, generates anot null constraint.

insertable=true,
Specifiesif Hibernate can insert an object into the database.

updatabl e=true,
Specifiesif Hibernate can update an object in the database.

columnDefinition="varchar(255)",
Can be used to explicitly define an SQL type for the column. Default: value as defined by the
dialect in the Hibernate configuration.

table="tableName2",
Table name of a secondary table. If not specified the column belongs to the primary table.

length=255,
Length of the column (appliesto String values only), Default: 255

precision=0,
Decimal precision, if column isadecimal value. Default: value as defined by the dialect in the
Hibernate configuration.

232

Appendix

scale=0
Decimal scale, if column isadecimal value. Default: value as defined by the dialect in the
Hibernate configuration.)

@javax.persistence.Transient
Specifies that a column is not mapped to a database column.

Sample.

@r ansi ent
private String transientField;

@javax.persistence.Basic
Optional, specifiesthat afield is mapped. By default all columns are mapped.

fetch=FetchType.EAGER,
Specifiesif afield isloaded when the object isloaded (EAGER) or when the field is accessed
(LAZY). Field based Lazy loading does only work with Bytecode instrumentation. If not enabled
than the LAZY will not be recognized. Default: FetchType.EAGER

optional=true
A hint, if thisfield can be null.)

@javax.persistence.L ob

Specifies that a column is alarge object type. Depending on the Javatype a CLOB (character large
object) or aBLOB (binary large object) is used. Depending on the database version and driver this
might not work out of the box. See chapter about Lob Mapping Chapter 10, Lob with Oracle and

PostgreSQL
@j avax.persistence.Temporal
Precisely defines a date, time or timestamp column

value=Tempora Type.DATE
Can be any of the following types: DATE, TIME, TIMESTAMP, NONE

Sample.

@enpor al (val ue=Tenpor al Type. DATE)
private Date dateFi el d;

@javax.persistence.Enumer ated

Specifies an enum field. value = EnumType.STRING:: Can be one of the following values:
EnumType.STRING or EnumType.ORDINAL STRING let Hibernate create a char column, holding
the enum type as character, for example JUNGLE for ForestType.JUNGLE. ORDINAL let Hibernate
create an integer column, holding an integer value for each enum type. The first enum typeis O, the
second 1, The ORDINAL approach might be a problem, if later you want to insert enum types.

Sample.

publ i c enum For est Type {JUNGLE, FOREST, NORDI C}

233

Appendix

@nuner at ed(EnunType. STRI NG
private Forest Type forestType;

@javax.persistence.Version

Specifies aversion column to implement an optimistic locking strategy (see Fehler: Referenz
nicht gefunden) Can be applied to the following typesint, Integer, short, Short, long, Long,
Timestamp. Use only one version column per class. Version column should be in the primary table

_, SecondaryTable) Do not update the version column yourself. In some databases a timestamp might
be not precisely enough, if your systemisfast. Therefore | prefer to useint or long columns.

Sample.

@/er si on
private Long version;

@javax.persistence AttributeOverride
Overwrites the column definition from a mapped super class or an embedded object.

name = "color",
field of the class

column = @Column(name = "pullover_column)
acolumn definition _, see @Column

Sample.
de. l al il una. conponent . si npl e. Sheep
@nbedded
@\ttributeOverride(name = "color", columm = @Col um(nane = "pul |l over _col um"))

private Pullover pullover;

@javax.persistence. AttributeOverrides Overwrites multiple column definition from a mapped
super class or an embedded object. value={ @AttributeOverride(...), @AttributeOverride(...)}:: Array
of @AttributeOverride

Sample.

@\ttributeOverrides({@\tributeOverride(name = "col or",
col um = @Col um(nane = "pul |l over _colum"))})

A.1.4. Special

@or g.hibernate.annotations.AccessType

Specifies how Hibernate sets values. Hibernate can use a set method (property) or reflection to set

the private field directly (field). By default, Hibernate verifies where theid is annotated. If the @Id
annotation isin front of the field than field based access is assumed. If the annotation isin front of the
get method then property based access is used. This annotation can be used in front of a class, afield
or aproperty.

value="field”
Can befield or property

234

Appendix

Sample.

@\ccessType(val ue="field")
public class Turtle inplements Serializable {

@or g.hiber nate.annotations.Formula
Can be used to get aformula calculated by the database. The column is of course read only.

value="10 * table_column + 5"
A formulabeing calculated in the DB.

Sample.

@ormula("10 * id + 5")
public Integer fornula;

@or g.hibernate.annotations.Type Can be used to specify the type being used, instead of Hibernate
let select it, based on the Javatype or other annotation. Y ou need it in rare cases. Type can be used to
specify a Custom type. See TypeDefs for a sample. type="nameOfTheType’,:: aname of type defined
in a @TypeDef or aclass parameters = { @Parameter(name = "paramName”, value = "theVaue") } ::
array of parameters. Each parameter has a name and avalue.

Sample.

@ype(type = "org. hi bernate. type. Bi naryType")
private byte i mageAsBytea[];

@or g.hibernate.annotations. TypeDefs

Can be used to define aglobal name for atype. Thisis useful, if you work with custom types. value =
{ @TypeDef(name = "keyType", typeClass = KeyType.class) }:: array of @TypeDef

Sample.

i mport org. hi bernate. annot ati ons. Type;

i mport org. hi bernate. annot ati ons. TypeDef;

i mport org. hi bernate. annot ati ons. TypeDef s;

...... snip

@ypebDef s(val ue = { @ypeDef (nane = "keyType", typeC ass = KeyType.class) })
@ntity

public class YogaC ub inplenments Serializable {

@ype(type = "keyType")
private String nane;

@or g.hibernate.annotations. TypeDef

name="keyType’,
Global name of the type, to be used when properties are defined

typeClass = KeyType.class
Class of the user type

parameters = { @Parameter(name ="x", value="y") }
Optional parameters (A custom type can be parametrized. Imagine atype providing lower case,
upper case Strings, depending on a parameters.)

235

Appendix

Sample see @TypeDefs
@or g.hiber nate.annotations.Par ameter

Is used together with other annotations, to specify parameters. @TypeDef usesiit to pass parametersto
custom types. name = "x",:: name of the parameter value = "y":: value of the parameter

A.1.5. Relation annotations

@javax.persistence.OneToOne
Defines aone to one relation. Sample: de.laliluna.relation.one2one

targetEntity = Invoicel.class,
Normally guessed from the Class. Specifies the other side of the relation.

cascade = { CascadeType.ALL},
Array of cascadeTypes -see chapter explaining Cascasde

fetch=FetchType.EAGER,
Specifiesif the other classisloaded, if thisclassisloaded. For one2one the default is EAGER.
Youcan setitto LAZY aswell.

optional=true,
Defines anot null contraint, if set to false.

mappedBy="otherSideProperty"
In abi-directional relation, specifies that the other side manages the relation.

Sample.

i mport j avax. persi stence. Joi nCol um;
i mport j avax. persistence. OneToOne;

...... snip
@neToOne(cascade = CascadeType. ALL)
@oi nCol um(nanme = "invoice_id")

private Invoicel invoice;
@javax.persistence.OneT oM any
Specifies aone to many relation. Sample: de.laliluna.relation.one2many

targetEntity = Invoicel.class,
Can be guessed, if you use generics. Specifies the other side of the relation.

cascade = { CascadeType.ALL},
Array of cascadeTypes -see chapter explaining cascasding

fetch=FetchType.LAZY,
Specifiesif the other classisloaded, if this classisloaded. For one2many the default isLAZY .
You can set it to EAGER aswell.

mappedBy="otherSideProperty"
In abi-directional relation, specifies that the other side manages the relation.

236

Appendix

Sample.
@neToMany

@oi nCol um(name="cl ub_i d", null abl e=fal se)
private Set<JavaC ubMenber 1> nenbers = new HashSet <JavaCl ubMenber 1>()

@javax.persistence.ManyToOne

Specifies a one to many relation. Used with the class being the many side of the relation. Sample:
de.lailuna.relation.one2many

targetEntity = Invoicel.class,
Normally guessed from the Class. Specifies the other side of the relation.

cascade = { CascadeType.ALL},
Array of cascadeTypes -see chapter explaining Cascasde

fetch=FetchType.EAGER,
Specifiesif the other classisloaded, if this classis|oaded. For one2one the default is EAGER.
Youcan setitto LAZY aswell.

optional=true,
Defines anot null contraint, if set to false. Default istrue

Sample.
@manyToOne

@oi nCol um(nanme = "club_id", nullable = fal se)
private JavaC ub3 cl ub

@javax.persistenceManyToM any
Specifies amany to many relation. Sample: de.laliluna.relation.many2many

targetEntity = Invoicel.class,
Can be guessed, if you use generics. Specifies the other side of the relation.

cascade = { CascadeType.ALL},
Array of cascadeTypes -see chapter explaining Cascasde

fetch=FetchType.EAGER,
Specifiesif the related objects are loaded, if this classisloaded. For many2many the default is
LAZY. You can set it to EAGER aswell.

mappedBy="otherSideProperty"
In abi-directional relation, specifies that the other side manages the relation.

Sample.
@manyToMany(cascade = CascadeType. ALL)
@oi nTabl e(nane = "concert _visitor_ 2",
joinColums = { @oi nCol um(nanme = "concert _id") },
i nverseJoi nCol ums = { @oi nCol um(nane = "visitor_id") })

private List<Visitor2> visitors = new ArrayList<Visitor2>();

237

Appendix

A.1.6. Join column annotations

@javax.persistence.JoinColumn

Used for relation mapping, specifies how tables are joined. Most values are guessed by Hibernate.
Sample: delailunarelation...

name = "club _id",
Column name storing the foreign key

referencedColumnName="id",
The name of the column which is referenced by the foreign key. By default the primary key
column is referenced but you can specify another column as well.

unique=false,
Used, when Hibernate generates tables. Thiswill generate a unique key constraint.

nullable = true,
Used, when Hibernate generates tables. Thiswill generate a not null constraint.

insertable=true,
Specify if this column can be inserted, if an object is saved.

updatabl e=true,
Specify if this column can be updated, if an object is saved.

columnDefinition="int4",
The SQL type of the foreign key column.

table=""
If you use a secondary table, you can specify in which table your foreign key isplaced. = see
secondary table.

Sample.

@manyToOne
@oi nCol um(nane = "club_id", nullable = fal se)
private JavaC ub3 cl ub;

@javax.persistence.JoinColumns
Is used to join classes with composite primary keys. Sample: de.laliluna.component.joincolumns

vaue = { @JoinColumn}
array of @JoinColumn

Sample.

@neToOne
@oi nCol ums({
@oi nCol um(nane="articl eGoup", referencedCol unmNanme="articleG oup"),
@oi nCol um(nane="articl eNunber", referencedCol utmNane="articl eNunber") })
privat e El bowRest el bowRest ;

238

Appendix

@javax.persistence.JoinTable

Used to join arelation with a separate table. Sample: de.laliluna.component.one2many and
many2many

name = "club_member",
database table name used for joining

catalog="",
database catalog (only supported by some databases)

schema="",
database schema (only supported by some databases)

joinColumns = { @JoinColumn(name = "member_id") },
Array of joinColumn. Defines the JoinColumns on this side of the relation. Y ou need multiple
columns for composite ids.

inverseJoinColumns = { @JoinColumn(name = "club_id") },
Array of joinColumn. Defines the JoinColumns on the other side of the relation. Y ou need
multiple columns for compositeids.

uniqueConstrai nts={ @UniqueConstraint(columnNames={"club_id"})}
If you let Hibernate create tables, thisinformation is used to create unique key constraints.

Sample.
@manyToOne
@oi nTabl e(nane = "cl ub_nenber",
j oi nCol ums = { @oi nCol um(nane = "nenber _id") },
i nverseJoi nCol unmms = { @oi nCol um(nanme = "club_id") })

private JavaC ub4 cl ub;
@javax.persistence.PrimaryK eyJoinColumn
Defines how atable isjoined to another table. Sample: de.laliluna.relation.one2one

name = "id",
Name of the column used in the secondary table. (Foreign key) Default is the name of the primary
key column.

referencedColumnName = "id",
Name of the column used in the primary table. (Primary key). Default values are taken from the
primary key definition.

columnDefinition = "int4"
SQL type of the foreign key column. Default values are taken from the primary key column.

Sample.
@neToOne(cascade = CascadeType. ALL, opti onal =f al se)

@i mar yKeyJoi nCol um
private Order3 order;

@javax.persistence.PrimaryK eyJoinColumns

239

Appendix

Specifies how atableisjoined. Can be used, if you have a compositeid.

value={ @PrimaryKeyJoinColumn}
array of @PrimaryKeyJoinColumn

See the PrimaryK eyJoinColumn sample in de.laliluna.relation.one2one and the composite sample
de.laliluna.component.joincolumns to get an impression, when thisis used.

A.1.7. Components

@javax.persistence. Embedded

Specifies that another class is embedded in this class. The fields of the embedded class can be mapped
to the sametable.

Hint: In anewer EJB implementation the Embedded annotation has an array of @AttributeOverride.
Hibernate might adopt this as well. example:

Sample (de.laliluna.component.simple.Sheep).

@nbedded
@\ttributeOverrides({@\tributeOverride(name = "col or",
col um = @ol um(nane = "pul |l over _col umm"))})

private Pullover pullover;
@javax.persistence.ElementCollection()
Maps a collection of components.

targetClass
Target class, optional, normally taken from generic declaration

fetch=FetchType.EAGER
Specifies how the datais fetched (EAGER | LAZY), default: LAZY

Sample (de.laliluna.component.collectionl, de.laliluna.component.collection2).

@&l erent Col | ecti on()

@oi nTabl e(nane="pi zza_i ngredi ents", joinColums =

@oi nCol uim(name="pi zza_i d"))

private Set<I|ngredient> ingredients = new HashSet <l ngredi ent >();

@or g.hiber nate.annotations.CollectionOfElements

Is now deprecated. Use @javax.persistence.ElementCollection() instead.
@javax.persistence.Embeddable Specifies that this class can be embedded into other classes.
@or g.hiber nate.annotations.Par ent

Can be used in an embedded class, if you need areference to the parent.

Sample.

i mport org. hi bernate. annot ati ons. Parent;

240

Appendix

@nbeddabl e

public class DeliveryAddress inmplenments Serializable {
@Par ent
private PizzaCient client;

A.1.8. Inheritance

@javax.persistence.l nheritance

Specifies an inheritance mapping, ie. an inheritance structure of classes is mapped to 1 or more
tables. strategy = InheritanceType.SINGLE_TABLE:: Specifies how the inheritance structure
ismapped SINGLE_TABLE = All columns from parent and derived classes in the same table.
TABLE_PER_CLASS = One table per parent or derived class. The derived tables have the columns
from the parent class aswell. JOINED = One table per parent or derived class. The parent table holds
the data of common columns.

Sample (delaliluna.inheritance.*).

@ntity
@ nheritance(strategy = I nheritanceType. SI NGLE TABLE)
@i scri m nat or Col uim(nane = "pl ant _type",

di scri m nat or Type = Di scri m nat or Type. STRI NG
public class Plant inplenents Serializable {

@ntity
public class Flower extends Plant {

@javax.persistence.Discriminator Column

Is used with the inheritance type InheritanceType.SINGLE_TABLE. Asall classes are stored in one
table we need a column which defines what kind of class arow belongs to.

name = "plant_type",
Database column name

discriminatorType = Discriminator Type.STRING,
Specifies the approach how the discriminator is stored. STRING gives an easily readable
representation. Can be any of STRING, CHAR, INTEGER

columnDefinition="varchar(31)",
optional, database column type, normally taken from the discriminatorType

length=20
length of database column, default: 31

Sample (delaliluna.inheritance.singletable.*).

@i scri m nat or Col um(nane = "pl ant _type",
di scri m nat or Type = Di scri m nat or Type. STRI NG
col umbDefinition="varchar(31)", |ength=31)

@javax.persistence.Discriminator Value

Optional, can be used with the inheritance type InheritanceType.SINGLE_TABLE, default: class
name

241

Appendix

value="Flower”
unique name specifying a derived class

Sample.
@ntity

@i scri m nat or Val ue(" Fl ower ")
public class Flower extends Plant {

@j avax.per sistence.M appedSuper class

Specifies an inheritance mapping, where the parent class is not mapped itself. example:
de.laliluna.inheritance.mappedsuper class.*

Sample.

@mppedSuper cl ass
public class MisicBand i npl enents Serializable {

@ntity
@equenceCener at or (nanme = "nusi chand_seq", sequenceNane = "nusicband_id_seq")
public class SoftrockG oup extends MiusicBand{

A.1.9. Queries

@j avax.persistence.NamedQueries
Defines multiple named queries. See example below.
@javax.persistence.NamedQuery

Defines a query which can be reused at various places. Provides a performance advantage to building
gueries every time. example: de.laliluna.other.namedquery.*

Sample.

@lamedQueri es({
@lamedQuer y(name = "bookQuery", query =
"from Conput er Book b where b.id > :mnld and b. name = : nanme",
hints = {
@uer yH nt (nanme
@uer yH nt (nanme

"org. hi bernate.readOnly", value = "fal se"),
"org. hi bernate.tineout”, value = "5000")})

})

Usage.

Li st <Conput er Book> |i st = session. get NanedQuery("bookQuery")
.set String("name", "Hibernate")

.setlnteger("mnld", 10)
dist();

@or g.hibernate.annotations.NamedQueries

Defines multiple named queries. See example below. The related chapter explains the difference to
@javax.persistence.NamedQueries.

242

Appendix

@or g.hibernate.annotations.NamedQuery

Defines a query which can be reused at various places. Provides a performance advantage to building
gueries every time. example: de.laliluna.other.namedquery.*

Sample.

@r g. hi ber nat e. annot at i ons. NamedQuer i es({
@r g. hi ber nat e. annot at i ons. NanedQuer y(name = "bookQuery", query =

"from Conput erBook b where b.id > :mnld and b. namre = : nane",
fl ushMbde = Fl ushModeType. AUTQO
cacheable = true, cacheRegion = "", fetchSize = 20, tineout = 5000

conment = "A conment", cacheMbde = CacheMbdeType. NORVAL
readOnly = true)})

Usage.
Li st <Conput er Book> | i st = session. get NamedQuer y("bookQuery")
.set String("name", "Hibernate")

.setlnteger("mnld", 10)
dist();

@javax.persistence.SqlResultSetM appings
Defines multiple result set mappings.
@javax.persistence.SglResultSetM apping

If you use SQL in aquery instead of HQL, you can still create entities as result. A result set mapping
tells Hibernate how to transform the SQL result set into entities.

example: de.laliluna.other.namedquery.*

Sample.

@3ql Resul t Set Mappi ngs({
@3ql Resul t Set Mappi ng(nane = "bookReport", entities = {@ntityResult
(entityd ass = Conput er Book. cl ass,
fields = {@iel dResult (name = "id", colum = "id"),
@i el dResul t (nane = "nane", colum = "book nane")})})

})
Usage.
Li st <Conput er Book> books = sessi on. creat eSQ_-Query

("select id, book_nane from conputerbook")
. set Resul t Set Mappi ng(" bookReport").list();

A.1.10. Not yet described

@javax.persistence. MapKey @javax.persistence.OrderBy @org.hibernate.NotFound @OnDelete
@javax.persistence.OrderBy cache DiscriminatorFormula LazyToOne, LazyCollection, Fetch
Batchsize, check, where indexcolumn, mapkey

Filter

243

Appendix

Filter, FilterDef

244

Index

Symbols

"@0One20ne, 89

1:1 relation, 88

l:nrelation, 94

<array>, 83

<bag>, 79

<cache>, 219

<class>, 60

<collection-id>, 82
<component>, 122
<composite-element>, 126
<composite-id>, 66
<discriminator>, 136
<element>, 80, 83

<formula>, 114

<generator class="assigned">, 64
<generator class="foreign">, 93
<generator class="native'>, 64
<hibernate-mapping>, 59
<idbag>, 82

<join>, 103, 140
<joined-subclass>, 138
<key-property>, 66

<key>, 78

<many-to-many>, 105
<many-to-on>, 89
<map-key-many-to-many>, 110
<map-key>, 80

<map>, 80, 110
<one-to-many>, 78
<one-to-one>, 91

<parent>, 122
<primitive-array>, 83

<set>, 78

<subclass>, 136, 140
<union-subclass>, 143
@ATttributeOverrides, 127
@Basic, 56

@BatchSize, 213

@CollectionOfElements, 80, 83, 123

@CollectionTable, 123
@Column, 56
@ColumnResult, 173
@DiscriminatorColumn, 135
@Documentld, 209

@ElementCollection, 123, 123, 126

@Embeddable, 57
@Embedded, 57, 121
@Embeddedld, 66

@Entity, 8

@Fetch, 214

@Field, 209

@FieldResult, 173
@GeneratedValue, 8, 64
@GenericGenerator, 92
@ld, 8

@l dClass, 67
@IndexColumn, 81, 126

@I ndexed, 209

@I nheritance, 132, 135
@JoinColumn, 9, 77, 94
@JoinTable, 80, 102, 105
@Lob, 150

@ManyToMany, 105
@ManyToOne, 9
@MapKey, 80
@MapKeyManyToMany, 109
@M appedSuperclass, 56, 131, 147
@NamedNativeQuery, 174
@NamedQuery, 164
@OneToMany, 8, 77, 94
@0OrderColumn, 126
@Parent, 121
@PrimaryKeyJoinColumn, 92
@SequenceGenerator, 8
@Sort, 78

@SglResultSetM apping, 173
@Temporal, 56

@Transient, 55

@Type, 151

, 61, 62, 62, 62, 62, 62, 86

A

access="field|property|ClassName", 72

addEntity, 172
addJoin, 173
agregation, 120
AliasToBeanResultTransformer, 216
al, 60

ALL, 87

all-delete-orphan, 87
Annotation mapping, 8, 53
application layers, 179
assigned, 73

Assigned Id, 64

245

Index

association, 3
auto-import, 59

B

batch-size, 60
bi-directional, 85
BLOB, 150
buildLockRequest, 30

C
C3P0, 224
Cache
cache, 217
cache.use_query_cache, 220
EH cache, 221
JBoss Treecache, 223
Nonstrict-read-write, 218
OS Cache, 222
query cache, 220
Read-write, 218
Readonly, 218
setCacheRegion, 220
swarm cache, 222
Transactional, 218
cache, 217
cache.use_query_cache, 220
CascadeType.MERGE, 86
CascadeType.PERSIST, 86
Cascading, 33, 33, 37, 86
"@0ne20ne, 89
1:1 relation, 88
<many-to-on>, 89
ALL, 87
all-delete-orphan, 87
delete, 87
delete-orphan, 87
evict, 87
lock, 87
MERGE, 87
PERSIST, 87
persist, 87
REFRESH, 87
refresh, 87
REMOVE, 87
replicate, 87
save-update, 87
catalog, 59, 60
Choosing, 131
CLOB, 150

component collections, 120
component mapping, 111
components, 119

composition, 120

composition of components, 120
Configuration, 12

connection pool, 224

createSQL Query, 170, 170, 171, 171

Criteria Queries, 20
criteriaquery, 165
current_session_context_class, 6

D

DAO, 177

DAOQOs with generics, 184
database driver, 11

DataSourceTransactionM anager, 204

date, 10

DBCP, 224

default-access, 59
default-cascade, 59
default-lazy, 59
default_batch fetch size, 214
delete, 87

delete-orphan, 87

Dependent lifecycle, 119
dependent lifecycle, 120
DerbyDialect, 8

detach, 39

detached, 21

Detached, 30

dialect, 6

dirty, 60

discriminator-value, 60
DiscriminatorType.CHAR, 136
DiscriminatorType.STRING, 135
doWork, 175

dynamic-insert, 60
dynamic-update, 60

E
EH cache, 221
elements, 162
em.persist, 34
empty, 162, 169
entity relation, 120
entity-name="EntityName", 62
EntityManager
detach, 39

246

Index

em.persist, 34
flush, 39
merge, 36
refresh, 39
remove, 37
Equals and hashcode, 128
evict, 34, 87
explicit", 60
Extended Session, 193

F

fetch, 25

FetchMode.JOIN, 26
FetchMode.SUBSELECT, 214
flush, 34, 39

FlushMode, 193, 193

foreign, 73, 93

Foreign key constraints, 85
format_sql, 213

G

Generate Hibernate mappings, 18
GenerationType. AUTO, 64
GenerationType.lDENTITY, 65
GenerationType.SEQUENCE, 64
GenerationType. TABLE, 65
guid, 73

inverseJoinColumns, 102

J

JBoss Treecache, 223
JBossTransactionM anagerL ookup, 189
JDBC transactions, 186
JDBCTransactionFactory, 188

join fetch, 215

joinColumns, 102

JRuby, 156

JTA transactions, 186
JTATransactionFactory, 189

L

lazy, 60

lazy="fase", 25
LazylnitializationException, 24
Libraries, 10

list, 158

lock, 30, 87
LockModeType.NONE, 38
LockModeType.OPTIMISTIC, 38

LockModeType.OPTIMISTIC_FORCE_INCREMENT,

38

LockModeType.PESSIMISTIC_READ, 38
LockModeType.PESSIMISTIC_WRITE, 38

LockOptions.NONE, 31
LockOptions.READ, 31

H LockOptions.UPGRADE, 31
Hibernate Query Language, 20 logdj, 12
Hibernate Search, 209 L ucene, 209
Hibernate types, 10
hibernate.cfg.xml, 6 M
Hibernate.initialize, 25 m:n relation, 104
HibernateTransactionM anager, 204 mappedBYy, 8
hilo, 73 member of, 162
HQL, 20, 157 merge, 32, 36
HSQLDialect, 8 MERGE, 87
mutable, 60

| MySQL5Dialect, 8
identity, 73
implicit, 60 N
increment, 73 native, 73
Inheritance Natural Id, 63

Choosing, 131 node, 72, 73
InheritanceType.JOINED, 132, 138 none, 60
InheritanceType.SINGLE_TABLE, 132, 135 Nonstrict-read-write, 218
InheritanceType. TABLE_PER_CLASS, 133, 143 NonUniqueObjectException, 31
insertable, 56 nullable, 56

247

Index

O
object relation mapping, 2
Open-Session-in-View, 192, 192
Optimistic locking, 195, 206
optimistic-lock

all, 60

dirty, 60

none, 60

version, 60
OracleDialect, 8

org.hibernate.id.MultipleHiL oPerTableGenerator,

73
ORM, 2
OS Cache, 222

P
package, 59
PERSIST, 87
persist, 87
persistence, 2
Persistence context, 28, 34
persistent, 21
persister, 60
Pessimistic locking, 197
polymorphism

explicit", 60

implicit, 60
PostgreSQL Dialect, 6
Propagation.MANDATORY, 204
Propagation.NESTED, 204
Propagation.NEVER, 204
Propagation.NOT_SUPPORTED, 204
Propagation.REQUIRES _NEW, 204
Propagation.SUPPORTS, 204
proxy, 60

Q

query cache, 220
Querying components, 127
QueryParser, 210

R

Read-write, 218
Readonly, 218
Reattaching, 30
refresh, 33, 39, 87
REFRESH, 87
remove, 37
REMOVE, 87

replicate, 87
reporting query, 215

S
save-update, 87
saveOrUpdate, 31
scalar values, 159
schema, 59, 60
ScrollableResults, 216
select, 73, 158
sel ect-before-update, 60
seghilo, 73
sequence, 73
Servletfilter, 192
Session
buildLockRequest, 30
Cascading, 33
createSQL Query, 170, 171
doWork, 175
evict, 34
Extended Session, 193
flush, 34
FlushMode, 193
lock, 30
merge, 32
Open-Session-in-View, 192
refresh, 33
saveOrUpdate, 31
session.save, 27
update, 31
Session handling, 185
session.connection(), 175
session.delete, 32
session.doWork(..), 175
session.save, 27
SessionFactory, 12
setCacheRegion, 220
setFetchMode, 26
setResultTransformer, 26
Shared references, 119
sort, 78
Springframework
DataSourceT ransactionManager, 204
HibernateT ransactionM anager, 204
Propagation.MANDATORY, 204
Propagation.NESTED, 204
Propagation.NEVER, 204
Propagation.NOT_SUPPORTED, 204
Propagation.REQUIRES NEW, 204

248

Index

Propagation.SUPPORTS, 204
SQL ServerDialect, 8
StaleObjectStateException, 31
StandardAnalyzer, 210
statistics, 213
Struts 1.3, 206
SUBSELECT, 214
swarm cache, 222
SybaseDialect, 8

T
table="tableName", 60
TermQuery, 210

time, 10

timestam, 10
timestamp, 10
Transactional, 218
Transactions, 185
transient, 21

U

Uni-directional, 84

uniqueResult, 158

unsaved-value, 72
UnsupportedOperationException, 170
UN_TOKENIZED, 210

updatable, 56

update, 31

use sgl_comments, 213

uuid, 73

\%

version, 60
Version column, 196
version>, 197

W
where, 160
WildcardQuery, 211

X
XML mapping, 9
XML Mapping, 58

249

	Guide to Java Persistence and Hibernate
	Table of Contents
	About the author, book and versions
	1. The author
	2. The book
	3. Library Versions

	Part I. Introduction
	Chapter 1. Introduction to Hibernate
	1.1. A first Hibernate example
	1.1.1. Introduction
	1.1.2. Creating Java Project and classes
	1.1.3. Hibernate configuration
	1.1.4. Annotation or XML
	Other databases

	1.1.5. Mapping
	Annotation mapping
	Other databases
	XML mapping
	Needed Libraries
	Database Driver

	1.1.6. Create a session factory
	1.1.7. Configuring Log4J
	1.1.8. Create database and tables
	1.1.9. Create a test client
	1.1.10. Using MyEclipse for Hibernate projects
	1.1.11. Adding libraries and Hibernate capabilities
	1.1.12. Generate Hibernate mappings from existing db

	1.2. Hibernate basics
	1.2.1. What is Hibernate?
	1.2.2. Powerful mapping
	1.2.3. Powerful query languages

	Chapter 2. Hibernate Concepts - State of Objects
	2.1. The three states of objects
	2.2. Lazy initialization, a Hibernate problem

	Chapter 3. Working with Objects
	3.1. Java Persistence versus Hibernate
	3.2. Hibernate API
	3.2.1. Saving
	3.2.2. Updating
	3.2.3. Deleting
	3.2.4. Additional commands

	3.3. EntityManager API
	3.3.1. Saving
	3.3.2. Updating
	3.3.3. Deleting
	3.3.4. Additional commands

	Chapter 4. A more complex example – web application
	4.1. Summary

	Part II. Mapping, Queries
	Chapter 5. Basic Mappings
	5.1. Annotation versus XML
	5.2. Annotation mapping
	5.2.1. Mapping fields
	5.2.2. Where to put annotations

	5.3. XML Mapping
	5.3.1. Field mapping
	5.3.2. Class mapping

	Chapter 6. Primary key mapping
	6.1. Natural versus Surrogate Ids
	6.2. Assigned Id
	6.3. Generated with Auto Strategy
	6.4. Other Annotation Strategies
	6.5. Composite Id
	6.6. Equals and Hashcode
	6.7. Other XML Id tags

	Chapter 7. Relation mapping
	7.1. Selecting between List, Set, Map or array to hold many side
	7.2. Uni- and Bi-directional relations
	7.3. Cascading
	7.4. 1:1 relation
	7.5. 1:n
	7.6. m:n
	7.7. 1:n:1
	7.8. Recursive relation
	7.9. Typed relation (XML only)
	7.10. Typed relation (annotation workaround)

	Chapter 8. Components = Composition mapping
	8.1. Composition versus entity relations
	8.2. Composed class in one table
	8.3. Composition as set of many classes
	8.4. Equals implementation
	8.5. Composition as list of many classes
	8.6. Advanced details
	8.7. Composition 1:n:1
	8.8. Not included mappings

	Chapter 9. Inheritance
	9.1. Use Case
	9.2. Overview on mapping approaches
	9.3. Single Table
	9.4. Joined Inheritance
	9.5. Joined Inheritance with Discriminator
	9.6. Mixing Single table and Joined
	9.7. Union Inheritance
	9.8. XML Includes
	9.9. Mapped Super Class

	Chapter 10. Lob with Oracle and PostgreSQL
	10.1. PostgreSQL
	10.2. Oracle

	Chapter 11. Querying data
	11.1. Useful tools
	11.1.1. Beam me into the code
	11.1.2. JBoss Tools
	11.1.3. Squirrel SQL Client

	11.2. HQL
	11.2.1. Select objects, scalars, etc
	11.2.2. Simple select
	11.2.3. Select with a unique result
	11.2.4. Select with join returning multiple objects
	11.2.5. Select with join returning one object
	11.2.6. Select with join returning distinct results
	11.2.7. Selecting a single column (scalar values)
	11.2.8. Selecting multiple columns (scalar values)
	11.2.9. Selecting objects and scalar values
	11.2.10. Selecting selective properties of a class
	11.2.11. Simple where condition
	11.2.12. Walking through relations
	11.2.13. Where condition in a related object
	11.2.14. Where condition with parameters
	11.2.15. Conditions on collections
	11.2.16. Where condition with mapped class
	11.2.17. Where condition with mapped class on the multiple side
	11.2.18. All, In, Some, Exists, Any elements queries
	11.2.19. NamedQuery

	11.3. Criteria Queries
	11.3.1. Simple select
	11.3.2. Select with a unique result
	11.3.3. Select with join returning objects multiple times
	11.3.4. Select with join returning distinct objects
	11.3.5. Select with a where condition on a related object
	11.3.6. Selecting a single column (scalar values, projections)
	Selecting multiple columns (scalar values, projections)
	Selecting selective properties of a class
	Walking through relations

	11.3.7. Simple where condition
	11.3.8. Where condition in relation
	11.3.9. Where with or condition
	11.3.10. Conditions on collections
	11.3.11. All, In, Some, Any elements queries

	11.4. Native SQL
	11.4.1. SQL to Entity
	11.4.2. SQL Resultset Mapping
	11.4.3. Named SQL Queries
	11.4.4. JDBC Connection

	Part III. Building applications and Architecture
	Chapter 12. Data Access Objects
	12.1. Best practices and DAO
	12.2. Data Access Objects DAO
	12.3. Weaving the application structure
	12.3.1. Paper book order
	12.3.2. eBook order
	12.3.3. Defining the application layers
	12.3.4. DAO and DaoFactory
	12.3.5. Creating DAOs with generics

	Chapter 13. Session and Transaction Handling
	13.1. Hibernate Session
	13.2. JTA versus JDBC Transactions
	13.3. Transaction handling – default pattern
	13.4. JDBC transactions with ThreadLocal
	13.5. JTA transaction with a single database
	13.6. JDBC or JTA with the Spring framework
	13.7. Conversations and Session Lifetime
	13.7.1. Short life of a session
	13.7.2. Lifetime until the view is rendered (Open-Session-in-View)
	13.7.3. Long life of a session

	13.8. Concurrent Access
	13.8.1. Optimistic Locking

	Chapter 14. Integration with other technologies
	14.1. Hibernate and Spring
	14.1.1. Configuration
	14.1.2. Use of the Spring template
	14.1.3. Alternative approach (nicer)
	14.1.4. Transaction handling

	14.2. Hibernate and Struts
	14.2.1. Optimistic locking
	14.2.2. Exception handling

	Part IV. Configuration, Performance, Validation and Full Text Search
	Chapter 15. Hibernate Full Text Search
	Chapter 16. Performance Tuning
	16.1. Analysing performance problem
	16.2. Iterating through relations – batches
	16.3. Iterating through relations – subqueries
	16.4. Iterating through relations – single query
	16.5. Reporting queries
	16.6. Iterating through large resultsets
	16.7. Caches
	16.7.1. General
	Aspects to consider

	16.7.2. EH Cache
	16.7.3. OS Cache
	16.7.4. Swarmcache
	16.7.5. Bypass a cache

	Chapter 17. Configuration
	17.1. Connection Pools
	17.1.1. Built-in connection pool
	C3P0
	DBCP

	17.1.2. JNDI

	Appendix A. Appendix
	A.1. Annotation Reference
	A.1.1. Entity and table annotation
	A.1.2. Primary key annotations
	A.1.3. Column annotations
	A.1.4. Special
	A.1.5. Relation annotations
	A.1.6. Join column annotations
	A.1.7. Components
	A.1.8. Inheritance
	A.1.9. Queries
	A.1.10. Not yet described

	Index

